Manuale d'uso Lorra WAN™

www.wit-italia.com

SOMMARIO

1	Introduzione	5
Infor	mazioni generali	5
Prere	quisiti	5
Offer	ta	.6
	Architettura interna al REDY	6
	Riferimenti LoRaWAN	7
	Sensori LoRaWAN	7
Istruz	zioni di sicurezza	8
Racco	omandazioni radio	9
	Introduzione	9
	Portata della trasmissione radio	9
	Altre possibili cause di interferenza	10
	Consumo delle pile	10
2	Antenna LoRaWAN (NEGO713)	11
Prese	entazione	11
Carat	teristiche	11
Instal	llazione	12
	Dimensioni	12
	Installazione dell'antenna	12
Colle	gamento dell'antenna	13
Colle	gamento al REDY	13
Indiri	zzamento IP	14
	Presenza di un server DHCP	14
	Assenza di un server DHCP	14
	Configurazione tramite l'interfaccia WEB	18
3	Configurazione	24
Aggiu	Ingere una rete LoRaWAN	24
Aggiu	ingere un'Antenna LoRa	26
4	Profili	27

Intro	duzione	. 27
Aggi	ungere un Profilo	. 27
I Sen	isori	. 29
	Device EUI	. 29
	Tipo di configurazione	. 29
	Inviare un Downlink	. 29
5	Risorsa Sensore LoBaWAN	30
5		30
	Link di ingresso della risorsa	. 30
		. 51
6	Focus sui sensori	32
Nexe	elec	. 32
	Principio di funzionamento	. 32
	Procedura di accoppiamento	. 32
	Temperatura, umidità, qualità dell'aria (indoor) (NEGO675)	. 33
	Temperatura, Umidità, CO2 (indoor) (NEGO676)	. 35
NKE		.37
	Principio di funzionamento	. 37
	Modalità di funzionamento: contatto Reed e indicatore acustico	. 39
	Modalità di funzionamento: contatto Reed e indicatori luminosi	. 41
	Modalità di funzionamento: Pulsanti e indicatori luminosi	. 43
	Temperatura, Umidità, CO2 e COV (indoor) (NEGO677)	. 45
	Temperatura, Umidità, CO2 e COV movimento e luminosità (indoor) (NEGO678)	. 48
	Temperatura interiore (NEGO679)	. 51
	Temperatura estrema (NEGO680)	. 54
	Sensore Digitale 10 ingressi e 4 uscite (classe A) (NEGO681)	. 57
	Misura di corrente con trasformatore amperometrico (NEGO683)	61
	Presa pilotabile connessa (versione UE) (NEGO684)	. 64
	Conta impulsi (1 ingresso) (NEGO687)	. 67
	Conta impulsi (3 ingressi) (NEGO688)	. 71
	Ingresso analogico 0-10 V o 4-20 mA (NEGO690)	. 75
	Rilevamento apertura Skydome (NEGO692)	. 79
	Temperatura indoor, depressione (NEGO693)	. 82
	Sensore per battente (NEGO695)	. 85

Temperatura, Umidità, Luminosità (indoor) (NEGO696)	. 88
Temperatura, Umidità (indoor) (NEGO697)	. 91
Temperatura a distanza (1 sonda) (NEGO698)	. 94
Temperatura a distanza (2 sonde) (NEGO699)	. 97
Sensore Digitale 10 ingressi e 4 uscite (classe C) (NEGO700)	. 100
Temperatura estrema remota (2m) (NEGO703)	. 104
Conta impulsi waterproof (3 ingressi) (NEGO707)	. 107
Temperatura interna, depressione e ingresso pressostato meccanico esterno. (NEGO70	Э)111
Conta impulsi luminosi (NEGO710)	. 114
Comando Filo Pilota (NEGO716)	. 117
Conta impulsi ATEX (3 ingressi) (NEGO719)	. 120
Conta impulsi waterproof ATEX (3 ingressi) (NEGO720)	. 124
ADEUNIS	. 128
Comfort	. 128
Temp	. 133
7 Risoluzione dei problemi	140
Antenna LoRa non raggiungibile	. 140
Contesto	. 140
Soluzione	. 140
L'avvio automatico dell'antenna LoRa non si attiva	. 141
Contesto	. 141
Soluzione	. 141

1 Introduzione

Informazioni generali

LoRaWAN è un protocollo a bassa velocità che comunica via radio a lungo raggio. Gli oggetti sono a basso consumo (batteria o pile) o collegati alla rete elettrica. Questo protocollo è utilizzato in ambito Smart Building per i grandi edifici (rispettando alcune raccomandazioni) o in ambito Smart Water principalmente per le applicazioni esterne.

La nostra soluzione LoRaWAN permette una configurazione centralizzata dell'intero sistema e funge da interfaccia tra gli oggetti connessi LoRa e i diversi impianti tecnici.

Prerequisiti

I prodotti LoRaWAN sono compatibili con la gamma **REDY tipo K7** dalla versione V13.0.0 (o superiore) con l'ADD LoRaWAN e l'antenna LoRaWAN NEGO713.

Non saremo in grado di fornire supporto per installazioni che utilizzano qualsiasi altra antenna diversa dall'antenna LoRaWAN (NEGO713) fornita da WIT.

Offerta

L'offerta **LoRaWAN** è costituita dal server LoRaWAN integrato nel REDY, dall'antenna LoRaWAN e da una serie di sonde, sensori e attuatori.

Architettura interna al REDY

- Server di Rete LoRaWAN integrato: permette di centralizzare nell'Unità Locale Intelligente (ULI) REDY l'attivazione e la gestione degli oggetti connessi alla rete privata LoRaWAN.
- Processi operativi locali: il Server Applicativo decodifica i dati dei sensori LoRa e li integra con i dati tecnici degli altri apparati tecnici gestiti dalla ULI REDY.
- Numerosi sensori e attuatori compatibili: i messaggi di oggetti appartenenti a diverse marche vengono decodificati direttamente dalla ULI REDY.
- Centro Integrato della rete: una o più antenne possono essere aggiunte ad un singolo REDY attraverso una rete IP (locale o pubblica) per aumentare la copertura della rete LoRaWAN.
- Interoperabilità e apertura: l'accesso standardizzato e sicuro ai dati è disponibile per interagire con le piattaforme Cloud e IoT.

Riferimenti LoRaWAN

Per ricevere i frame, l'ULI REDY deve disporre dell'ADD LoRaWAN e dell'antenna (NEGO713). L'ADD LoRaWAN può essere connessa fino a 10 sensori; gli upgrade disponibili permettono l'aumento del numero dei sensori collegati.

RIF.	Denominazione	Commenti
ADD004	ADD LoRaWAN 10 sensori	ADD LoRaWAN 10 sensori
NEGO713	Antenna LoRa	Antenna LoRa utilizzabile su una UC REDY
UPG101	Upgrade ADD LoRa 10 to 50	Upgrade da 10 a 50 sensori
UPG102	Upgrade ADD LoRa 10 to 100	Upgrade da 10 a 100 sensori
UPG103	Upgrade ADD LoRa 10 to >100	Upgrade da 10 a più di 100 sensori
UPG104	Upgrade ADD LoRa 50 to 100	Upgrade da 50 a 100 sensori
UPG105	Upgrade ADD LoRa 50 to >100	Upgrade da 50 a più di 100 sensori
UPG106	Upgrade ADD LoRa 100 to >100	Upgrade da 100 a più di 100 sensori

<u>(</u>)

Quando si passa ad una rete di grandi dimensioni (> 100 oggetti collegati), si raccomanda vivamente l'utilizzo di una seconda antenna LoRaWAN (NEGO713).

Sensori LoRaWAN

L'ULI REDY comunica in IP con l'antenna LoRaWAN per leggere le informazioni trasmesse degli oggetti connessi.

Lo sviluppo della compatibilità con i sensori è in continua evoluzione. La FAQ #53 elenca i diversi sensori compatibili. È disponibile alla pagina Download del nostro sito www.wit-italia.com.

Istruzioni di sicurezza

Per la sicurezza delle persone e dei beni, è imperativo leggere attentamente il contenuto di questo manuale prima di installare, utilizzare o eseguire qualsiasi manutenzione dei prodotti. L'installazione, la messa in servizio e la manutenzione dei prodotti devono essere eseguite da un elettricista qualificato in conformità con gli standard, le direttive e le normative vigenti. L'installazione o l'uso impropri potrebbero comportare il rischio di scosse elettriche o incendi.

Step 1 Controllare i seguenti punti quando si ricevono i prodotti:

Step 2 Controllare le attrezzature di protezione individuale e collettiva (DPI / DPC)

Step 3 Per prevenire il rischio di scosse elettriche, ustioni o esplosioni:

Scollegare l'alimentazione prima di rimuovere, installare, cablare o eseguire la manutenzione dei prodotti.

Installare i prodotti in condizioni operative normali. \bigotimes

Utilizzare un dispositivo di rilevamento privo di tensione appropriato.

Raccomandazioni radio

Introduzione

L'uso della tecnologia wireless elimina la necessità di cablaggi elettrici tra le sonde e l'unità di misura, ma richiede l'osservanza di alcune semplici regole durante la progettazione e l'installazione.

Portata della trasmissione radio

Oltre ai limiti naturali della portata della trasmissione, si devono prendere in considerazione altre interferenze: le parti metalliche, l'armatura delle pareti, le lamine metallizzate per l'isolamento termico o il vetro metallizzato per l'assorbimento del calore, riflettono le onde magnetiche.

Le onde radio sono in grado di passare attraverso le pareti, ma in questo caso l'attenuazione è molto più alta rispetto a quella che si avrebbe in un campo libero.

Qualche esempio in base al tipo di muro:

Materiali	Penetrazione
Legno, gesso, vetro non trattato senza metallo	90100%
Mattoni, agglomerato	6595%
Metallo, laminato di alluminio	010%

Quindi, i materiali utilizzati nell'edificio sono di grande importanza per la valutazione della profondità del campo di trasmissione. Per valutare l'impatto dell'ambiente, vengono utilizzati alcuni valori standard:

Contatto visuale	15 km con campo libero
Contatto visuale in città	2 km con campo libero
Pareti in gesso/legno	Portata massima di 25 m attraverso 4 muri
Muro in mattoni/cemento	Portata massima di 15 m attraverso 2 muri
Muro in cemento armato	Portata massima di 10 m attraverso 1 muro/soffitto

Le aree di stoccaggio e le trombe degli ascensori devono essere considerate come schermi. Le condizioni meteorologiche possono giocare un ruolo nella forza del segnale, è quindi consigliabile effettuare degli audit per assicurarsi che i sensori non siano al limite della portata.

Altre possibili cause di interferenza

I dispositivi che funzionano ad alte frequenze (computer, sistemi audio/video, trasformatori, ballast, ecc.) sono da considerarsi fonti di interferenza.

La distanza da altri trasmettitori (GSM / DECT / Wi-Fi) dovrebbe essere di almeno 2 metri.

Consumo delle pile

Ogni produttore dà indicazioni sulla durata della batteria. Va notato che questa durata di vita può variare in funzione di una serie di parametri:

- Condizioni di conservazione del dispositivo
- Distanza dal ricevitore
- Frequenza di trasmissione
- Eventi climatici L'ambiente (temperatura, umidità, pressione, ecc.)

Per dispositivi di tipo attuatore è consigliabile scegliere un prodotto di classe C (collegamento alla rete elettrica).

Si raccomanda di sostituire le batterie scariche con quelle fornite dal produttore, in caso contrario l'autonomia potrebbe essere limitata.

Alcuni sensori hanno batterie saldate e non offrono la possibilità di sostituirle sul posto. In questo caso sarà necessario fare un reso o sostituire il prodotto.

2 Antenna LoRaWAN (NEGO713)

Presentazione

L'antenna LoRaWAN permette, grazie alla sua alimentazione PoE e alla possibilità di fissarla all'esterno su un palo, di comunicare in IP con l'ULI REDY.

Caratteristiche

Principali caratteristiche tecniche	
Dimensioni	L.198 x l.45 x A.45 mm
Peso	230 g
Montaggio	Su montante con due fascette di plastica (in dotazione)
Impermeabilità	IP65
T° di utilizzo	-3055 °C
T° di stoccaggio	-3070 °C
Umidità d'utilizzo	Da 10% a 90% senza condensa
Umidità di stoccaggio	Da 5% a 90% senza condensa
Alimentazione	24 Vdc 500 mA (via PoE passivo)
Consumi	2,81 W
Collegamenti	1 porta RJ45 Ethernet 10/100Mbps
Antenna	1 connettore N tipo RF per l'antenna
Modulazione LoRa	863-873 MHz
Conformità e certificazioni	
Radio & EMC	RED 2014/53/EU (European Radio Equipment Directive) ETSI EN 300 220-2
	EN 61000-6-1:2007
	IEC 61000-6-1:2005 (ed2.0)
	ETSI EN 301 489-3 V1.6.1:2013
Sicurezza umana	EN 62209-2 / IEC/EN 62479-1
Sicurezza elettrica	EN 60950

Installazione

<u>Dimensioni</u>

Corpo:

_____495 (19,49) Dimensions: mm (inch)

Installazione dell'antenna

L'apparato LoRaWAN è progettato per essere posizionato verticalmente con l'antenna rivolta verso l'alto.

Per il montaggio su un montante, si consiglia di utilizzare i collari di plastica in dotazione.

Si raccomanda inoltre di non lasciare il cavo Ethernet appeso al connettore Ethernet ma di fissarlo al muro o al montante in modo da impedire che il suo peso sia sostenuto interamente dal connettore. Idealmente il cavo dovrebbe essere fissato a meno di 2 metri dal gateway.

L'accensione dell'antenna LoRaWAN prima che sia avvitata può provocare dei danni al prodotto.

Collegamento dell'antenna

- **Step 1** Rimuovere il passacavo dal tappo.
- **Step 2** Passare il cavo Ethernet attraverso il foro del tappo.
- **Step 3** Aprire il passacavo in silicone pre-tagliato e posizionarlo intorno al cavo Ethernet.

Step 4 Premere il passacavo dall'interno del tappo fino alla sua posizione finale (una parte rimane fuori dal tappo).

Step 5 Connettere il cavo Ethernet.

Step 6 Avvitare il tappo al corpo dell'antenna tenendo dritto il cavo Ethernet.

Collegamento al REDY

Indirizzamento IP

L'antenna LoRaWAN è configurata di fabbrica con l'indirizzo IP: **192.168.1.50** È comunque utile conoscere gli scenari di riconfigurazione dell'indirizzo IP in caso di reset dell'antenna.

Presenza di un server DHCP

- **Step 1** Collegare l'antenna LoRa alla rete ed eseguire una ricerca con l'amministrazione della rete o con un software di terzi (*ad esempio Advanced IP Scanner*).
- **Step 2** Inserire nel browser l'indirizzo IP trovato. Quando la pagina di autenticazione dell'antenna viene visualizzata, passare al prossimo capitolo "configurazione tramite l'interfaccia WEB".

La scheda di rete dell'antenna LoRa si chiama «Atmell».

Assenza di un server DHCP

Se non è presente un server DHCP, per la configurazione dell'antenna sarà necessario connettersi via USB.

- o Il cavo USB è di tipo USB A (PC) e Mini-B (Antenna LoRa).
- Per realizzare la configurazione è necessario installare l'applicazione <u>PuTTY</u>.
- **Step 1** Collegare il cavo USB al PC e poi all'antenna LoRa.
- Step 2 In Gestione Dispositivi di Windows, trovare la porta COM denominata 'ELGO GMAS (COMX)' o 'Periferica seriale USB (COMX)' (il numero della porta di comunicazione dovrà essere inserito nel software di connessione locale), poi impostare i parametri della porta come segue:

Bit al secondo	115200
Bit di dati	8
Parità	Nessuna
Bit di stop	1
Controllo di flusso	Nessuno

Step 3 Nel software PuTTY impostare il numero della porta e i parametri di comunicazione come mostrato di seguito:

Parameter	Value	
Baudrate	115200	
Data bits	8	
Stop bits	1	
Parity	none	
Flow control	none	

Step 4 Sempre nel software PuTTY, compilate i parametri qui sotto e cliccate su **Open**:

Real PuTTY Configuration		×		
- Session	Basic options for your PuTTY	session		
Logging Terminal Keyboard Sell	Specify the destination you want to connect to Serial line Speed COM4 115200			
Features Window Appearance Behaviour Translation Selection	Connection type: Cane of Ielnet Rlogin S Load, save or delete a stored session Saved Sessions	SH Serjal		
Colours Connection Data Proxy Telnet Rlogin	Default Settings LORIX_USB	Load Sa <u>v</u> e Delete		
⊕- SSH	Close window on exit: Always Never Only or	n clean exit		
About	Open	Cancel		

Step 5Inserire le seguenti credenziali nella finestra del prompt dei comandi che è apparsa:login:admin

password: lorix4u

PuTTY	_		×
LORIX OS (Wifx LORIX family products operating system) l.l.l lor ev/ttyGS0	ix-one	-220071	/d ^
lorix-one-220071 login: admin Password:			
<pre> / _ / _ / _ / _ / _ / _ / _ / / / _ / _ / / / / / / Wifx LORIX _ _ < / / _ / _ / _ / _ / _ / _ Mifx LORIX / _ / < / / / _ / _ / _ / _ / _ / _ / _ operating system Version: 1.1.1+ca3d814 (Mont Fort) Date: 03 September 2020, 15:17:38 Machine: lorix-one-512</pre>			
System information as of: Sun Jan 1 01:01:29 CET 2012 System load: 1.41 Memory usage: 15.8% Usage on /: 1% Local users: 0			
lorix-one-220071:~\$			~

Step 6 Eseguire il comando «sudo nmcli connection up service» per attivare il network service sull'IP 192.168.8.8:

Step 6 Modificare l'indirizzo IP della scheda di rete del PC mettendolo nello stesso dominio dell'indirizzo dell'antenna LoRa (*es: 192.168.8.60*) e aggiungere un IP nello stesso dominio del futuro indirizzo IP dell'antenna (*es: 192.168.1.60 poiché l'antenna LoRa sarà in 192.168.1.11*):

Proprietà - Ethernet	×		Impostazioni avanzate TCP/IP	×
Proprietà - Internet Protocol Version	4 (TCP/IPv4)	×	X Impostazioni IP DNS WINS	
Generale			Indirizzi IP	
È possibile ottenere l'assegnazione ai rete supporta tale caratteristica. In c richiedere all'amministratore di rete le	utomatica delle impostazioni IP se la aso contrario, sarà necessario impostazioni IP corrette.		Indirizzo IP Subnet mask 192.168.8.60 255.255.255.0 192.168.1.60 255.255.255.0	
○ Ottieni automaticamente un indi ○ Utilizza il seguente indirizzo IP:	rizzo IP		Aggiungi Modifica Rimuovi	
Indirizzo IP:	192.168.8.60		Gateway predefiniti	
Subnet mask:	255.255.255.0		Gateway Metrica	
Gateway predefinito:				
Ottieni indirizzo server DNS auto	omaticamente			
Utilizza i seguenti indirizzi server	DNS:		Aggiungi Modifica Rimuovi	
Server DNS preferito:			Metrica automatica	
Server DNS alternativo:			Metrica interfaccia:	
Convalida impostazioni all'uscita	Avanzate			
	OK Annulla		OK Annulla	

Step 7 È possibile chiudere la utility PuTTY, l'antenna è ora disponibile sull'indirizzo 192.168.8.8 fino al prossimo riavvio. La configurazione tramite l'interfaccia WEB può iniziare.

Configurazione tramite l'interfaccia WEB Indirizzo IP dell'antenna LoRaWAN

Step 1 Collegarsi all'antenna LoRa con l'indirizzo <u>http://192.168.1.50</u>, o all'indirizzo fornito dall'utility Putty <u>http://192.168.8.8</u> o ancora all'indirizzo fornito dal server DHCP. Viene visualizzata la pagina seguente:

Step 2 Inserire il seguente identificativo:

login:	admin
password:	lorix4u

Si consiglia di modificare i codici di accesso preimpostati.

Step 3 In **System/Regional settings**, impostare il fuso orario dell'antenna:

=		MAN	AGER	🚊 admin 👻	÷
5	Dashboard		System Regional settings		
۰.	System	^			
	Information	0	Date and time		
	Regional settings	S	Gateway time: 01/01/2012, 01:04:33 ()		
	Resources	O	Gateway localized time: 01/01/2012 01:04/3 @		
	Update	C			
	Logs		CREFRESH		
>	Network	\sim			
640	LoRa	*	Timezone Transme Paris Paris I Changes to system logs will be effective on the next restart		
			Time settings		
			Automatic time update		
			Use NTP pool		
			Pool address pool ntp. org		
	Notifications	0	O Use custom servers v6.92		Connected

(i)

•	WIFX LORI	IXMAN	AGER								•	, admir
5	Dashboard			Enabled				<u> </u>	198.67 KB		Ī	
\$	System	\sim										
2	Network	â		Connection status								
	Overview	0		Connected								
	VPN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
010	LoRa	~		IPv4	address 192.168.8.8 /24		GATEWAY 192.168.8.1		DNS 192.168.8.1 (*2)	~		
				IPv6	ADDRESS fe80::fce5:cc95:669f:9	led1 /64	GATEWAY		DNS -	~		
				Settings AUTO-CONNECT Disabled						0		
				IPv4	MODE manual	address 192.168.8.8	0ATE 192.	WAY 168.8.1	DNS 192,168.8.1 (+2)	~		
	Notifications			IPv6	MODE auto	DNS -				~		
-			© 2021 - Wifx Sarl				v0.9.2				ļ	

Step 4 In **Network/Ethernet**, clicca sulla matita di modifica per cambiare le impostazioni di rete:

Step 5 Inserire l'indirizzo IP dell'antenna in **IP Address**, non dimenticare di compilare il campo **Netmask**.

- Se necessario, compilare le impostazioni del Gateway e del server DNS.
- È possibile aggiungere un indirizzo IP di riserva cliccando sul + nella linea dell'indirizzo. *Es: IP Fisso su 10.10.10.50*

	Addresses	Hosts	Netmask	Amount of a Class C
/30	4	2	255.255.255.252	1/64
/29	8	6	255.255.255.248	1/32
/28	16	14	255.255.255.240	1/16
/27	32	30	255.255.255.224	1/8
/26	64	62	255.255.255.192	1/4
/25	128	126	255.255.255.128	1/2
/24	256	254	255.255.255.0	1
/23	512	510	255.255.254.0	2
/22	1024	1022	255.255.252.0	4
/21	2048	2046	255.255.248.0	8
/20	4096	4094	255.255.240.0	16
/19	8192	8190	255.255.224.0	32
/18	16384	16382	255.255. 19 2.0	64
/17	32768	32766	255.255.128.0	128
/16	65536	65534	255.255.0.0	256

• Tabella di corrispondenza del campo **Netmask**:

Settings			
Profile backhaul			•
Profile name backhaul		Connection retr	y •
IP addressing			
IPV4 IPV6			
Method manual			•
IP addresses 192.168.8.8	× 24	itmask 1	+
Gateway 255.255.255.0			×
DNS No DNS configured			+
Routing			
Route distance			
Remote subnets			
	CANCEL	SAVE	CONNECT

Step 6 Selezionare **SAVE** e poi **CONNECT** per terminare la configurazione:

Step 7 La validazione del nuovo indirizzo si avvia.
 Nel caso in cui la connessione non venga validata, l'antenna prenderà il suo vecchio IP, cioè 192.168.8.8:

IPV4 IPV6		
Method		
IP addresses 192.168.8.8	Netmasi × 24	+
Gateway 192.168.8.1	Safe update in progress	×
DNS 192.168.8.1	The Manager is validating connection to the gateway. If the connection could no be checked within 30 seconds, the	×
8.8.8.8	Previous configuration will be restored.	× +
outing		
oute distance		
emote subnets + ADD SUBNET		
N	EW ADDRESS	0480E

Inserire l'indirizzo IP del REDY

Step 1 In **LoRa/Settings**, selezionare la scheda **Forwarder** e poi cliccare sulla matita di modifica:

=	WIFX LOR	RIXMANA	AGER	💄 admin 🗸	
5	Dashboard		LoRa Settings		
•	System	~			
≻	Network	~	FORWARDER HARDWARE		
((†))	LoRa	^		2	
	Status	0	No forwarder configured)	
	Settings	•	You have no forwarder configured at the moment. The LoRaWAN packets will not be relayed and will be lost.		
			To configure a forwarder, click the configuration button on the right.		
L			Info		
			Region EU868		
			Antenna 448i gain		
			serial (UID) fcc23dfffe220071 ≜®		
			MAC Address FC:C2:3D:22:00:71		

Step 2 Selezionare UDP Packet Forwarder:

Change forwarder
UDP Packet Forwarder
LoRa Basic Station
ChirpStack Gateway Bridge
· Packet forwarder
▲ No reliable disconnection when the link is unstable
The UDP Packet Forwarder is monitored by the LORIX OS tools. It will be automatically restarted in case of termination to ensure maximal uptime.
CANCEL APPLY

Step 3 Cliccare sulla matita di modifica di Configuration:

≡	WIFX LORI)	KMAN	AGER			💄 admin 👻	÷
8	Dashboard			- Stopped C			
\$	System	~					
>-	Network	\sim		Logs	v		
(r ₁))	LoRa	^					
	Status	0		a di su di su		1	
	Settings	•		Configuration			
				Gateway ID	FCC23DFFFE220071		
				Server	localhost ± stato ± stato		
				Keep alive interval	10 seconds		
				Stat interval	30 seconds		
				Push timeout	100 ms		
				Forwarding policies	Forward when C RRC valid C RC certor C RC cetabled		
				GPS	Disabled		

Step 4 Aggiungere le righe **server_address** (IP del REDY) e **push_timeout_ms** con la sintassi seguente:

"server_address": "192.168.1.10", "push_timeout_ms": 500,

Ed	it configuration	
LO	CAL GLOBAL	
tt 1 2 3 4	<pre>{ /* Put there parameters that are different for each gateway (eg. pointing one gateway to a test server while the others stay in production) */ /* Settings defined in global_conf will be overwritten by those in local_conf */ "gateway_conf": { </pre>	
5 6 7 8 9	<pre>/* You must pick a unique 64b number for each gateway (represented by an hex string) */ "gateway_IO": "FCC230FFEE220071", "server_address": 1929.168.1.10", "push_timeout_ms": 500,</pre>	
10 11 12 13 14 15 16 17	<pre>/* Gateway GPS coordinates */ "fake_gps": false, /* Enable if you want the below coordinates to be sent to the server */ "ref_idende": -1, /* Example for the Matterhorn: 7.658492 */ "ref_iltitude": -1 /* Example for the Matterhorn: 4478 */ }</pre>	
		RELOAD SAVE

i Annotare il codice presente in **gateway_ID**, sarà utile nella configurazione del REDY.

Gateway_ID	Codice che permette di identificare l'antenna dall'ULI REDY
server_address	Indirizzo IP per l'accesso all'ULI REDY
Push_timeout_ms	Periodo per il rilancio della connessione

- **Step 5** Salvare (save) e chiudere (close) la finestra di configurazione.
- Step 6 Attivare il servizio cliccando si Auto-Start e poi sul bottone Restart:

≡	WIFX LORI	KMAN	AGER	💄 admin 👻	
	Dashboard		LoRa Settings		
۵	System	~	610 C		
>	Network	~	FORWARDER HARDWARE		
(t)	LoRa	Â			
	Settings	\$	UDP Packet Forwarder		
			Vost Network Servers support the Semtech UDP protocol Courd data transfer load for metered connections Automatical Automatical Automatical Te UDP Packet Forwarder is monitored by the LORIX OS tools. It will be automatically restarted in case of termination to ensure maximal uptime. Control Running C START STOP RESTART Auto-start Auto-start		

Step 7 In **LoRa/Settings**, selezionare il tipo di antenna installata (far riferimento all'etichetta presente sull'imballaggio dell'antenna):

=	WIFX LOR	XMAN.	GER	💄 admin 🗸	:
8	Dashboard		LoRa Settings		
\$	System	~			
\succ	Network	\sim	FORWARDER HARDWARE		
((_†))	LoRa	^			
	Status	0	Hardware		
	Settings	٥	Regin • EUB68 • The region will define the available and used frequency plans. • Addit gain • The antenna type configuration is used to configure the concentrator. • I Some forwarders will use the antenna type and region configured in the Network Server.		

3 Configurazione

Aggiungere una rete LoRaWAN

Anche con la ADD LoRaWAN (ADD004), è necessario scaricare e installare nel REDY il server LoRaWAN. Questo può essere scaricato da **Configurazione / Amministratore / Aggiornamento**, effettuando un controllo della disponibilità di aggiornamenti:

- Step 1 Cliccare su Controllo disponibilità aggiornamenti.
- Step 2 Scaricare l'applicazione LoRaWAN Serveur cliccando sul bottone di avvio del download 🥰.
- **Step 3** Installare l'applicazione **LoRaWAN Serveur** cliccando sul bottone di installazione L'avvenuta installazione sarà indicata dall'icona **V**.

Gestione	Parametriz	zzazione	Configurazione				
Sistema	Preferenza	Utilizzatore	Rete	Manutenzione	Esploratore A	mministratore A	PI
Amministratore						📰 🗸 🕯	ስ 🖧 😔
Aggiornamento Progetti	Config.ini File Certificati						
	Server WAS Indirizzo IP Controllo disponibilità agg Data ultimo controllo	iornamen 20/11/202	20 12:57:09				
	Gestione delle applicazioni						
	Nome			Versione operativa	Versione disponibile sul serve	Stato	
	OS			v2.4.0 21/07/2021	v2.2.0 14/01/2020	OS aggiornato	 ✓
	REDY Process/Monito	r		v13.3.0 23/07/2021	v13.0.3 26/11/2020	Applicazione aggiornata	V
	BACnet Client			v1.3.0	v1.3.0 25/09/2020	Applicazione aggiornata	 ✓
	RACnet Serveur			v1 2 1	v1 2 1 08/06/2020	Applicazione aggiornata	4
	LoRaWAN Serveur			v0.6.75	v0.6.75 06/09/2020	Applicazione aggiornata	v

i Questa operazione richiede che il REDY sia connesso a Internet. Nel caso contrario è possibile scaricare il server LoRaWAN dalla pagina Download del nostro sito internet <u>www.wit-italia.com</u>.

Step 4 Nella pagina Configurazione / Rete, dalla finestra a destra, aggiungere una rete LoRaWAN per creare la rete LoRaWAN nell'elenco delle reti disponibili:

Si consiglia di non modificare i parametri preimpostati.

- 1) È necessario che l'antenna LoRaWAN sia configurata per prima. Questa conterrà l'indirizzo IP del REDY e gli invierà i frame LoRa.
- 2) In caso di modifiche alla configurazione è sempre necessario il riavvio della rete (spuntare **Valido**) per fare in modo che queste vengano prese in conto.

Aggiungere un'Antenna LoRa

Step 1 Per aggiungere un'antenna LoRa cliccare su 'Aggiungere' nella sezione Gateway LoRaWAN della pagina di configurazione della rete LoRaWAN (Configurazione / Rete / Rete LoRaWAN):

Gestio	ne Paramet	rizzazione	Configurazione						»	🔨 Admin 🗦
Sistema	Preferenza	Utilizzatore	Rete	Manutenzione	Esploratore	Amministratore		API		∓ Aggiungere Una Rete
🕬 Réseau LoRaV	VAN					÷ 6	· 🗸 🔇	<i>C</i> 6	•	
Réseau LoRaWAN	Connessione "loopback" (LoRas	Server)								🚯 Lista delle reti
		Tempo join KAZ (S)	0						^	E 🕞 IP
		Ritardo RX1 (s)	1							EAN
		Ritardo RX2 (s)	2							E COM1 COM2
	Potenza massim	na di trasmissione (dBm)	16							ExtenBUS
	Offset Velocità d	li trasmissione RX1 (DR)	0							⊳ ⊷ USB ⊨ _ Net_2
	Velocità d	li trasmissione RX2 (DR)	0							Réseau WIFI
		Frequenza RX2 (MHz)	1							PLUG M-Bus à vide.COM1.Net PLUG M-Bus comm à vide COM1.Net
		rioquonza rotz (mrz)								E Sector PLUG M-Bus comm. mauvais câblage.COM1.
										Extension PLUG517 ExtenBUS/1COM RS232
	🔓 Gateway LoRaWAN									-
	Aggiungere									
	LORIX One				Gateway ID	(MAC)	ndirizzo IP ≓ 192.	68.1.234		•

Step 2 Inserire i parametri dell'antenna LoRa:

🔞 Gateway LoRaWAN	mi 🗸 😋 🎜 🛛
Descrizione	Gateway LoRaWAN
Gateway ID (MAC)	
TX Chain	0
Antenna Gain (dBi)	0
Altitudine	0
Rete principale	LAN

Descrizione	Descrizione dell'antenna Lora
Gateway ID (MAC)	Numero del Gateway_ID dell'antenna LoRa (Step 3 della procedura <i>Inserire l'indirizzo IP del REDY</i>)
Tx Chain	0 per impostazione predefinita, non modificare a meno se sia necessario
Antenna Gain (DBi)	Guadagno menzionato sull'antenna LoRa (es: 4dbi)
Altitudine	Informazioni sull'altitudine dell'antenna LoRa
Rete Principale	LAN per impostazione predefinita, non modificare.

4 Profili

Introduzione

L'aggiunta di sensori rende possibile il collegamento tra un sensore LoRaWAN e la risorsa REDY. Gli elementi inseriti permettono di configurare le informazioni inviate dai sensori e la frequenza di comunicazione.

Aggiungere un Profilo

I profili sono disponibili in **Parametrizzazione** / **IoT.** Servono a raggruppare le sonde per tipo di sonda in funzione del fabbricante e dell'uso (*es: NKE Temperatura visualizzerà la temperatura ambiente di una stanza*).

L'elenco dei profili si trova nella parte destra della pagina IoT.

L'accesso ad un profilo permetterà l'accesso ai diversi sensori in esso contenuti oltre che ai **Parametri.** I modelli di **Downlink** potranno essere inviati all'insieme dei sensori appartenenti al profilo per uniformarne la configurazione. Alla sua creazione il profilo non contiene sensori.

- **Step 1** Selezionare il profilo che corrisponde alla sonda che si vuole configurare e cliccare su **Aggiungere un profilo**.
- Step 2 Nella scheda Parametri inserire la descrizione e il tempo di inattività:

Profilo	📄 Profilo NKE Temperature (NKE 50-70-085) 🔷 🗸 📀				亩	С	4
Sensori	Parametri	Dow	Downlinks				
📰 Paran	🚎 Parametri						
	Descrizione		NKE Temperature				
Tempo di inattività		tività	0				
			Tempo di attesa (in secondi) tra l'ultimo frame ricevuto e quello s	ucces	sivo.		

i Il **Tempo di inattività** (in secondi) permette di far apparire la sonda "in ritardo" e attiverà il Testimone della risorsa associata.

Step 3 Inserire le informazioni della scheda **Downlink**.

		*	۵	3	×
Descrizione	Temp 15				
Descrizione	Invio della temperatura ogni 15 minuto				
FPort	125				
Payload	1100800040000				
Confermato					
				Invi	are

- Per definire i frame Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>
 - È possibile configurare dei Downlink "predefiniti" che vengono inviati in gruppo per tutti i sensori del profilo. Questi Downlink predefiniti hanno anche una colonna Numero, che può essere utilizzata dalla risorsa Sensore LoRa per automatizzare l'invio.
 - La casella di controllo **Confermato** è usata per ricevere una conferma dal sensore per assicurarsi che sia configurato correttamente.

Step 4 Nella scheda Sensori, cliccare su 💿 per aggiungere un sensore.

(**i**)

Quali profili sono compatibili? Consulta l'elenco delle compatibilità disponibile nella pagina Download del nostro sito <u>www.wit-italia.com</u>: **FAQ#53 Le compatibilità WIT**.

I Sensori

Device EUI

💼 NKE Temperature 🗸 🛽 💼 🎜 🕇							
Parametri Downlinks							
⊋ Parametri							
Descrizione	NKE Temperature						
Device EUI							
	Chiave unica del sensore LoRaWAN (DevEUI)						
Tipo di configurazione	Nessuno	~					
	Modalità di associazione dei sensori con la rete LoRaWAN: OTAA = C ABP = Activation By Personalisation (meno sicura)	Over The	Air Acti	vation (Join),		

Ogni sensore è dotato della propria chiave di sicurezza, che viene fornita dal produttore del sensore o dal fornitore. La chiave permette di accoppiare il sensore all'ULI REDY, in modo che il sensore non possa essere usato da un'altra istanza.

Tipo di configurazione

Per la configurazione sono possibili due modalità:

- OTAA (consigliata): Associazione tra l'ULI REDY e il sensore tramite onde radio. Sarà necessario inserire i codici **Application EUI** e **Application KEY**.
- ABP: Attivazione tramite personalizzazione delle chiavi di sicurezza (modalità meno sicura). Sarà necessario inserire i codici **DevAdr, NwkSkey** e **AppSkey**.

Inviare un Downlink

È possibile inviare un Downlink direttamente al sensore indipendentemente dal Downlink del profilo.

I Downlink in coda non sono memorizzati e sono quindi persi nel caso in cui il prodotto venga riavviato.

Dopo aver aggiunto un profilo o un sensore, è necessario riavviare il server LoRaWAN (Configurazione/Rete/Rete LoRaWAN).

www.wit-italia.com

5 Risorsa Sensore LoRaWAN

Per utilizzare i sensori creati in precedenza, sarà necessario aggiungere le risorse **Sensore LoRaWAN**.

Aggiungere la risorsa

In Parametrizzazione / Risorse:

- **Step 1** Aggiungere una risorsa Sensore LoRaWAN disponibile nel gruppo di risorse IoT / LoRa.
- **Step 2** Nella scheda Parametri selezionare il Profilo opportuno:

	Parame	Parametri della risorsa										
	Identità	Gruppo	Informazioni	Testimone	Giornale	Figli (0)	Schema	Parametri	Stato			
						Scelta de	ll'appared	cchio				
				NKE Tempe	NKE Temperature 🗸							
			Ap	parecchi sel	ezionati:	Nessuno		_				
Step 3	Nella scheda Parametri, selezionare il sensore da utilizzare:											
	Parametri della risorsa											
	Iden	tità Grup	opo Informazi	oni Testimo	ne Giorna	ale Figli (0) Schen	na Paramet	ri Stato			
	Scelta dell'apparecchio											
				Profilo s	selezionato	0: NKE Ter	mperature	~				
				Apparecchi	selezionat	i: Nessund	D	~				

∧	dmin	,
Ac	ggiungere una risorsa	
FT d	Comunicazione personalizzata	
H C	Comunicazione TRSII	
a d	Comunicazione WOP	
a d	Contatore in comunicazione	
9 (1)	Interfaccia di comunicazione	
	Periferica	
	Rete informatica	- 1
Intelli	igente	
Ð 🚺	Acqua e Bonifica	
0 💋	Gestione della zona	
E 🚺	HVAC & ACS	
E 🚺	Illuminazione di emergenza	
E 🚺	Regolazione	
0	Sicurezza	
E 🚺	Sistema	
H 🗍	Smart grid	
IOT		
0	EnOcean	
	LoRa	
°U	Sensore Lonavian	
Anali	si	
0	Usencoard	
E	memorizzazione dei dati	
, 0	dossier di risorsa	
E 🚺	Modell	
	Aggiungere	
- E1	enco della risorna	18

Step 4 Nella scheda Parametri, cliccare sul bottone **Parametrizzazione** per accedere alla pagina che permette la scelta nell'utilizzo delle uscite disponibili:

NKE Temperature Ufficio 1 NKE Temperature Ufficio 2

Configurazione dell'uscita 💿 🗸 🖑 🏷 🕻						
Descrizione	Тіро					
room temperature	Uscita IO 🗸					
room minimum temperature	Uscita IO 🗸					
room maximum temperature	Nessuno 🗸					
	Descrizione room temperature room minimum temperature room maximum temperature					

Le uscite della risorsa indicheranno ora i valori del sensore LoRa connesso.

Link di ingresso della risorsa

Inactivity	Sensore inattivo, a 1, la risorsa è bloccata
Sand Scanaria	Attivazione dell'invio dello scenario legato al profilo
Send Scenario	(Parametrizzazione/IoT/Profilo)
Scenario	Numero dello scenario da inviare
Send Payload	Attivazione dell'invio del Payload
Payload Fport	Permette di distinguere i diversi tipi di messaggi
Payload Value	Valore del Payload da inviare (esadecimale)
Payload Ack	Richiesta ricevimento payload

6 Focus sui sensori

Nexelec

Principio di funzionamento

I prodotti Nexelec integrano un sistema intelligente. Grazie all'algoritmo IZIAIR, sono in grado di calcolare un indice di qualità dell'aria indoor per aiutare gli utenti a prendere delle misure adeguate alla situazione.

Sono dotati di una spia luminosa che indica la qualità dell'aria in funzione del livello di CO2 (configurabile / disattivabile):

Procedura di accoppiamento

- **Step 1** Inserire i codici Device EUI, Application EUI e Application KEY) nei campi dedicati del REDY (Parametrizzazione / IoT).
- **Step 2** Premere il pulsante sul retro del sensore Nexelec (il LED arancione lampeggia ogni secondo per 8-10 secondi):

Se l'accoppiamento ha avuto successo, il LED diventerà verde fisso.

Se l'accoppiamento non è riuscito il LED diventerà **rosso** fisso, il prodotto riproverà automaticamente una volta, se non riesce di nuovo sarà necessario ripetere l'operazione.

www.wit-italia.com

Temperatura, umidità, qualità dell'aria (indoor) (NEGO675) Informazioni sul sensore

Denominazione del modello	Insafe+ Pilot
Riferimento WIT	NEGO675
Descrizione	Misura la temperatura, l'umidità e la qualità dell'aria indoor
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	□Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
Metodi di	⊠Protocole LoRaWAN™
configurazione	⊠NFC
	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10 min preimpostato
Caratteristiche	
Dimensioni (A x L x P)	105 x 105 x 30
Classe IP	/
Temperatura / umidità d'esercizio	050 °C / 095%
Stoccaggio	050 °C / 095%
Parametri	
Temperatura	Precisione ±0,2 °C (intervallo di misura: -30 °C / +70 °C)
Umidità	Precisione ±1% (intervallo di misura: 0% / 100%)
Alimentazione	
Pile	Batterie al litio saldate
Autonomia in un intervallo di 1025°C	10 anni
Installazione	
Tipo di montaggio	Murale

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Procedura</u> <u>di accoppiamento</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «Nexelec Insafe+ Pilot Temperatura, umidità, qualità dell'aria (indoor)» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- Step 3 Configurare il sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Temperatura (attuale, minima e massima) in °C
- o Umidità relativa (attuale, minima e massima) in %
- o Qualità dell'aria (da 1 a 5)

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i «Downlink» definendo i Payload a partire dallo <u>Strumento di generazione online</u> (iscrizione gratuita richiesta) messo a disposizione dal produttore degli apparati. Per ognuno verificare che il comportamento del sensore sia coerente con il funzionamento desiderato.

Temperatura, Umidità, CO2 (indoor) (NEGO676)

Informazioni sul sensore

Denominazione del modello	Insafe+ Carbon
Riferimento WIT	NEGO676
Descrizione	Misura temperatura, umidità, CO2 e qualità dell'aria indoor
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	□Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	⊠NFC
configurazione	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10 min per impostazione predefinita
Caratteristiche	
Dimensioni (A x L x P)	105 x 105 x 30
Classe IP	/
Temperatura d'esercizio	050 °C / 095%
Stoccaggio	050 °C / 095%
Parametri	
Temperatura	Precisione ±0,2°C (Intervallo di misura: -30 °C / +70 °C)
Umidità	Precisione ±1% (Intervallo di misura: 0% / 100%)
CO2	Precisione: ±(50 ppm + 3% del valore misurato) (Intervallo di
	misura: 0 / 5000 ppm)
	Tecnologia a infrarossi non dispersiva (NDIR)
Alimentazione	
Pile	Batterie al litio saldate
Autonomia in un intervallo	10 anni
Installazione	
iviontaggio	
	Posa libera con supporto amovibile

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Procedura</u> <u>di accoppiamento</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- Step 1In Parametrizzazione / IoT, creare un profilo «Nexelec Insafe+ Carbon Temperatura, Umidità, CO2
(indoor)» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- Step 3 Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 Tipo di configurazione OTAA: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Temperatura (attuale, minima e massima) in °C
- Umidità relativa (attuale, minima e massima) in %
- o CO2 in PPM
- o Qualità dell'aria (da 1 a 5)

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i «Downlink» definendo i Payload a partire dallo <u>Strumento di generazione online</u> (iscrizione gratuita richiesta) messo a disposizione dal produttore degli apparati. Per ognuno verificare che il comportamento del sensore sia coerente con il funzionamento desiderato.

NKE

Principio di funzionamento

Lo schema seguente riassume le modalità di funzionamento (avvio, accoppiamento, reset di fabbrica,...) che possono essere attivate su un sensore LoRa[®] NKE. Alcuni sensori non coprono tutte le modalità qui discusse (questo sarà indicato nel capitolo dedicato).

L'interruttore Reed (interruttore a lamina o Reed Switch) può essere sostituito da pulsanti meccanici su alcuni sensori.

Manuale d'uso – LoRaWAN

PAIRING MODE

Corrisponde al tentativo di abbinare il sensore alla rete LoRaWAN™ rieseguendo la procedura di associazione.

Tutti i parametri inseriti vengono conservati.

Si attiva dopo 3 brevi sorvoli del contatto Reed o su iniziativa del sensore nei seguenti casi:

- o Nessuna ricezione di frame provenienti dalla rete (Downlink) per 4 giorni.
- o Soglia per il numero di trasmissioni di frame (100 di default) raggiunto.
- o In mancanza di conferma della ricezione.

ſ	١

TEST MODE

Corrisponde a una serie di trasmissioni di frame vuoti (battiti cardiaci) ogni minuto per 10 minuti.

Il primo frame vuoto appare entro 10 secondi dall'attivazione del Test Mode. Le comunicazioni normali sono disattivate durante i test (in realtà sono solo ritardate).

Si attiva in seguito ad un breve sorvolo, di meno di un secondo, del contatto Reed. Può essere disattivato dall'utente sorvolando il contatto Reed una volta in modo rapido.

FACTORY RESET MODE

Corrisponde al reset dell'applicazione alle sue impostazioni di fabbrica (cancellazione di tutte le configurazioni definite dall'utente).

Anche i dati e gli attributi di accoppiamento alla rete LoRaWAN™ vengono azzerati (contatori, ...).

Si attiva dopo 3 successivi sorvoli del contatto Reed eseguiti come segue:

- 2 brevi sorvoli.
- L'ultimo sorvolo deve durare almeno 7 secondi.

Modalità di funzionamento: contatto Reed e indicatore acustico Accensione «Working Mode»

Esistono due modi di procedere in funzione del modello di sensore.

Nel primo caso, il sensore deve essere acceso tramite un classico interruttore "ON/OFF", per il quale è sufficiente portare quest'ultimo in posizione "ON".

Nel secondo caso, è necessario passare con un magnete una volta per un secondo sopra l'interruttore Reed (questo interruttore è normalmente contrassegnato da un'etichetta su un lato dell'involucro della sonda).

Dopo l'accensione, l'apparecchiatura tenterà di associarsi alla rete LoRaWAN[™]. Si dovrebbe quindi sentire un segnale acustico acuto che si ripete ogni due secondi. Quando il sensore riesce ad associarsi, si dovrebbe sentire una melodia della durata di circa un secondo: una successione di un bip acuto seguito da un bip grave ripetuto due volte.

Spegnimento «Storage Mode»

Esistono due modi di procedere in funzione del modello di sensore.

Nel primo caso, il sensore deve essere spento utilizzando un interruttore ON/OFF convenzionale. Per fare questo, basta commutare l'interruttore sulla posizione "OFF".

Nel secondo caso, è necessario passare una volta sopra l'interruttore Reed per 5 secondi con un magnete (questo interruttore è normalmente contrassegnato da un'etichetta su un lato dell'involucro).

Solo nel secondo caso viene emessa una segnalazione acustica: un bip acuto seguito da un bip grave.

Invio ripetuto di frame vuoti «Test/Configuration Mode»

Per avviare questa modalità, è necessario passare rapidamente una volta sopra l'interruttore Reed con un magnete, (questo interruttore è normalmente contrassegnato da un'etichetta su un lato dell'involucro).

Se il sensore è in "Storage Mode", non si devono notare modifiche nel comportamento (il sensore rimane in "Storage Mode").

Successivamente a questa azione, il sensore inizia ad emettere ripetutamente dei frame vuoti per 10 minuti. Durante l'attivazione di questa modalità viene emessa una segnalazione acustica di due segnali successivi a intervalli regolari di 3 secondi.

Per interrompere questa modalità, è necessario passare una volta sopra l'interruttore Reed con un magnete, altrimenti si possono aspettare i 10 minuti predefiniti.

Associazione «Paring/Reassociation Mode »

Questa modalità permette di associare nuovamente il sensore alla rete LoRaWAN[™] riavviando la procedura di abbinamento. Può essere attivata su iniziativa del sensore nei seguenti casi:

- o Nessuna ricezione di frame dalla rete (Downlink) per 4 giorni
- o Soglia del numero di trasmissioni di frame (100 di default) raggiunto
- o Mancanza di conferma della ricezione

Se si vuole avviare questa modalità manualmente, bisogna passare sopra l'interruttore Reed con un magnete tre volte di seguito (questo interruttore è normalmente contrassegnato da un'etichetta su un lato dell'involucro). La segnalazione acustica corrisponde al capitolo Avvio e Abbinamento.

La modalità si interrompe automaticamente in seguito ad un abbinamento riuscito, poi il sensore inizia a lavorare normalmente e trasmette i frame definiti nella sua configurazione.

Una ri-associazione non causa la perdita delle configurazioni definite dall'utente (AppEUI, DevAddr, rapporti, ...).

Reset di fabbrica «Factory Reset Mode»

Questa modalità resetta tutti i parametri del sensore alle impostazioni di fabbrica e cancella anche le configurazioni salvate nella memoria Flash.

Per avviare questa modalità, l'interruttore Reed deve essere sorvolato 3 volte con un magnete (questo interruttore è normalmente contrassegnato da un'etichetta su un lato della cassa) come segue:

- Primi due passaggi veloci
- Ultimo passaggio prolungato (circa 7 secondi) finché non si sente una segnalazione acustica composta da 3 ripetizioni di 3 bip successivi (dal più grave al più acuto). Il sensore dovrebbe spegnersi automaticamente e poi riavviarsi.

Modalità di funzionamento: contatto Reed e indicatori luminosi Accensione « Working Mode »

Esistono due modi di procedere in funzione del modello di sensore.

Nel primo caso, il sensore deve essere acceso tramite un classico interruttore "ON/OFF", per il quale è sufficiente portare quest'ultimo in posizione "ON".

Nel secondo caso, è necessario passare con un magnete una volta per un secondo sopra l'interruttore Reed (questo interruttore è normalmente contrassegnato da un'etichetta su un lato dell'involucro della sonda).

Durante il passaggio, il LED rosso lampeggia rapidamente e poi si spegne.

In seguito, l'apparecchiatura tenterà di collegarsi alla rete LoRaWAN[™]. Si dovrebbe quindi vedere il LED verde iniziare a lampeggiare (fase di accensione di 250ms) lentamente, ogni 5 secondi. Non appena il sensore si accoppia con successo alla rete, il LED verde smette di lampeggiare.

Spegnimento « Storage Mode »

Esistono due modi di procedere in funzione del modello di sensore.

Nel primo caso, il sensore deve essere spento utilizzando un interruttore ON/OFF convenzionale. Per fare questo, basta commutare l'interruttore sulla posizione "OFF".

Nel secondo caso, è necessario passare una volta sopra l'interruttore Reed per 5 secondi con un magnete (questo interruttore è normalmente contrassegnato da un'etichetta su un lato dell'involucro).

Solo nel secondo caso il LED rosso lampeggerà lentamente 5 volte.

Invio ripetuto di frame vuoti « Test/Configuration Mode »

Per avviare questa modalità, è necessario passare rapidamente una volta sopra l'interruttore Reed con un magnete, (questo interruttore è normalmente contrassegnato da un'etichetta su un lato dell'involucro).

Se il sensore è in "Storage Mode", non si devono notare modifiche nel comportamento (il sensore rimane in "Storage Mode").

Successivamente a questa azione, il sensore inizia ad emettere ripetutamente dei frame vuoti per 10 minuti. Contemporaneamente il LED inizia a lampeggiare come descritto qui di seguito:

- o IL LED rimane attivo 3 secondi per ogni lampeggio.
- I lampeggi sono distanziati di 3 secondi.

Per interrompere questa modalità, è necessario passare una volta sopra l'interruttore Reed con un magnete, altrimenti si possono aspettare i 10 minuti predefiniti.

Associazione « Paring/Reassociation Mode »

Questa modalità permette di associare nuovamente il sensore alla rete LoRaWAN™ riavviando la procedura di abbinamento. Può essere attivata su iniziativa del sensore nei seguenti casi:

- o Nessuna ricezione di frame dalla rete (Downlink) per 4 giorni
- Soglia del numero di trasmissioni di frame (100 di default) raggiunto
- o Mancanza di conferma della ricezione

Se si vuole avviare questa modalità manualmente, bisogna passare sopra l'interruttore Reed con un magnete tre volte di seguito (questo interruttore è normalmente contrassegnato da un'etichetta su un lato dell'involucro). Le fasi di accensione e spegnimento del LED verde corrispondono a quelle del capitolo Avvio e associazione.

La modalità si interrompe automaticamente in seguito ad un abbinamento riuscito, poi il sensore inizia a lavorare normalmente e trasmette i frame definiti nella sua configurazione.

Una ri-associazione non causa la perdita delle configurazioni definite dall'utente (AppEUI, DevAddr, rapporti, ...).

Reset di fabbrica « Factory Reset Mode »

Questa modalità resetta tutti i parametri del sensore alle impostazioni di fabbrica e cancella anche le configurazioni salvate nella memoria Flash.

Per avviare questa modalità, l'interruttore Reed deve essere sorvolato 3 volte con un magnete (questo interruttore è normalmente contrassegnato da un'etichetta su un lato della cassa) come segue:

- o Primi due passaggi veloci
- Ultimo passaggio prolungato (circa 7 secondi) fino a che si avviano dei 3 lampeggi brevi e successivi: il LED rosso e il LED verde si accendono contemporaneamente per 125 ms. e ogni lampeggio è ad una distanza di 125 ms. dal precedente.

In seguito la sonda si spegne e riaccende automaticamente.

Modalità di funzionamento: Pulsanti e indicatori luminosi Accensione « Working Mode »

Il sensore deve essere acceso tramite un classico interruttore "ON/OFF", per il quale è sufficiente portare quest'ultimo in posizione "ON".

In seguito, l'apparecchiatura tenterà di collegarsi alla rete LoRaWAN[™]. Si dovrebbe quindi vedere il LED verde iniziare a lampeggiare (fase di accensione di 250ms) lentamente, ogni 5 secondi. Non appena il sensore si accoppia con successo alla rete, il LED verde smette di lampeggiare.

Spegnimento «Storage Mode»

Per spegnere il sensore, occorre posizionare su "OFF" l'interruttore "ON/OFF".

Invio ripetuto di frame vuoti « Test/Configuration Mode »

Per avviare questa modalità, è necessario premere leggermente il pulsante interno "USER".

Se il sensore è in "Storage Mode", non si devono notare modifiche nel comportamento (il sensore rimane in "Storage Mode").

Successivamente a questa azione, il sensore inizia ad emettere ripetutamente dei frame vuoti per 10 minuti. Contemporaneamente il LED inizia a lampeggiare come descritto qui di seguito:

- o IL LED rimane attivo 3 secondi per ogni lampeggio.
- o I lampeggi sono distanziati di 3 secondi.

Per interrompere questa modalità, è necessario premere leggermente il pulsante interno "USER", altrimenti si possono aspettare i 10 minuti predefiniti.

Associazione « Paring/Reassociation Mode »

Questa modalità permette di associare nuovamente il sensore alla rete LoRaWAN™ riavviando la procedura di abbinamento. Può essere attivata su iniziativa del sensore nei seguenti casi:

- o Nessuna ricezione di frame dalla rete (Downlink) per 4 giorni
- o Soglia del numero di trasmissioni di frame (100 di default) raggiunto
- Mancanza di conferma della ricezione

Se si vuole avviare questa modalità manualmente, si deve premere tre volte il pulsante interno "USER". Le fasi di accensione e spegnimento del LED verde corrispondono a quelle del capitolo Avvio e associazione.

La modalità si interrompe automaticamente in seguito ad un abbinamento riuscito, poi il sensore inizia a lavorare normalmente e trasmette i frame definiti nella sua configurazione.

Una ri-associazione non causa la perdita delle configurazioni definite dall'utente (AppEUI, DevAddr, rapporti, ...).

Reset di fabbrica « Factory Reset Mode »

Questa modalità resetta tutti i parametri del sensore alle impostazioni di fabbrica e cancella anche le configurazioni salvate nella memoria Flash.

Per avviare questa modalità, il pulsante interno "RESET" (o "USER" se non esiste) deve essere premuto tre volte come segue:

- o Due prime pressioni rapide,
- Ultima pressione prolungata fino a che si avviano dei 3 lampeggi brevi e successivi: il LED rosso e il LED verde si accendono contemporaneamente per 125 ms. e ogni lampeggio è ad una distanza di 125 ms. dal precedente.

In seguito la sonda si spegne e riaccende automaticamente.

Temperatura, Umidità, CO2 e COV (indoor) (NEGO677) Informazioni sul sensore

Denominazione del modello	Vaqa'O
Riferimento WIT	NEGO677
Descrizione	Misura temperatura, umidità relativa, COV e CO $_{\scriptscriptstyle 2}$
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocollo LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	Da 30 min a 48 h
Caratteristiche	
Dimensioni (A x L x P)	120 x 80 x 25
Classe IP	/
Temperatura d'esercizio	1030 °C
Stoccaggio	055 °C / 060% Ur
Parametri	
Temperatura	Intervallo di misura +0°C a +55°C / Precisione ±0,2 °C tra +12°C
	e +25°C ; altrimenti ±0,5°C
Umidità	Intervallo da 0% a 100% UH / Precisione ±2% tra +12°C e +25°C
CO2	Intervallo da 0 a 5000 / Precisione ±100ppm
Indice COV	Intervallo da 0 a 500 / Precisione ±5
Alimentazione	
Pile	3 Pile al litio fornite (3,6V / 2500 mAh)
Autonomia in un intervallo di	Più di 3 anni con 1 lettura dei valori ogni 10 minuti e 1
1025°C	trasmissione radio ogni ora, misure compresse

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Vaqa'O Temperatura, Umidità, CO2, COV (Indoor)» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: È necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4
 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u>

 Sensore LoRaWAN)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Temperatura (attuale, minima e massima) in °C
- o Umidità relativa (attuale, minima e massima) in %
- Livello di COV (attuale, minimo e massimo) e unità associata
- o Livello di CO2 (corrente, minimo e massimo) e unità associata
- Stato di apertura dell'involucro (in caso di violazione) e numero di cambiamenti associati

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.

Step 3 Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106040280000029800a85a0480064	Report della temperatura ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1°C
1106040580000021800a85a04801f4	Report dell'umidità relativa ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione del 5%.
1106800c80000021803c85a048000a	Report del livello di COV ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione del valore +/-10
3106800c80000021800a85a04803e8	Report del livello di CO2 ("End Point" 1), ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1000 ppm
1106000f00005510800a85a001	Report dello stato di apertura, ogni 24 ore al massimo, ogni 10 minuti su un cambiamento di stato.
1106000f00040223800a85a000000005	Rapporto del numero di cambiamenti di stato, ogni 24 ore al massimo, ogni 10 minuti su una variazione di almeno 5 cambiamenti
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Temperatura, Umidità, CO2 e COV movimento e luminosità (indoor) (NEGO678)

Informazioni sul sensore

Denominazione del modello	Vaqa'O+
Riferimento WIT	NEGO678
Descrizione	Misura temperatura, umidità relativa, COV e CO2, luce e movimento
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	Da 30 min a 48 h
Caratteristiche	
Dimensioni (A x L x P)	120 x 80 x 25
Classe IP	/
Temperatura d'esercizio	1030 °C
Stoccaggio	055 °C / 060% Ur
Parametri	
Temperatura	Intervallo di misura +0°C a +55°C / Precisione ±0,2 °C tra +12°C
	e +25°C ; altrimenti ±0,5°C
Umidità	Intervallo da 0% a 100% UH / Precisione ±2% tra +12°C e +25°C
CO2	Intervallo da 0 a 5000 / Precisione ±100 ppm
Indice COV	Intervallo da 0 a 500 / Precisione ±5
Luminosità	Intervallo da 0.01 a 83 000 Lux / Precisione 5%
Pressione	Atmosferica Intervallo da 300 a 1100 hPa / Precisione ±0,6 hPa
Movimento	Campo 12m / Precisione 102° orizzontale, 92° verticale
Alimentazione	
Pile	3 Pile al litio fornite (3,6V / 2500 mAh)
Autonomia in un intervallo di	Più di 3 anni con 1 lettura dei valori ogni 10 minuti e 1
1025°C	trasmissione radio ogni ora, misure compresse

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Vaqa'O Temperatura, Umidità, CO2 e COV, movimento e luminosità (Indoor)» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Temperatura (attuale, minima e massima) in °C
- o Umidità relativa (attuale, minima e massima) in %
- o Livello di COV (attuale, minimo e massimo) e unità associata
- o Livello di CO2 (corrente, minimo e massimo) e unità associata
- o Luminosità (attuale, minima e massima) in Lux
- o Stato di apertura dell'involucro (in caso di violazione) e numero di cambiamenti associati
- Stato di occupazione (valore booleano: Falso = inoccupato, Vero = occupato)
- Misurare l'angolo di spostamento verticale

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

Step 1 In Parametrizzazione / IoT, selezionare la sonda desiderata.

- Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di Step 2 configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- Step 3 Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106040280000029800a85a0480064	Report della temperatura ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1°C
1106040580000021800a85a04801f4	Report dell'umidità relativa ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione del 5%.
1106800c80000021803c85a048000a	Report del livello di COV ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione del valore +/-10
3106800c80000021800a85a04803e8	Report del livello di CO ₂ ("End Point" 1), ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1000 ppm
1106000f00005510800a85a001	Report dello stato di apertura, ogni 24 ore al massimo, ogni 10 minuti su un cambiamento di stato.
1106000f00040223800a85a000000005	Rapporto del numero di cambiamenti di stato, ogni 24 ore al massimo, ogni 10 minuti su una variazione di almeno 5 cambiamenti
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: http://support.nke-watteco.com/codec-online/

www.wit-italia.com

Temperatura interiore (NEGO679) Informazioni sul sensore

Denominazione del modello	Temperatura ambiente
Riferimento WIT	NEGO679
Descrizione	Misura della temperatura ambiente indoor
Software integrato	
Classe LoRaWAN™	А
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10 min, 1 h, 12 h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	80 x 80 x 25
Classe IP	/
Temperatura d'esercizio	1030 °C
Stoccaggio	040°C / 2060% Ur
Parametri	
Temperatura	Intervallo +0 °C a +40 °C / Precisione ±0,3°C / Risoluzione
	±0,2°C
Alimentazione	
Pile	Pila al litio fornita (3,6V / 3600 mAh)
Autonomia in un intervallo	9 anni: 1 misura ogni 10 min – 1 trasmissione ogni ora
di 1025°C	> 10 anni: 2 misure all'ora – 1 trasmissione ogni ora.
	Dati compressi

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo "NKE Temperatura Ambiente" attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>).

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

o Temperatura (attuale, minima e massima) in °C

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del « Downlink »	Descrizione della configurazione
1106040280000029800a85a0480064	Report della temperatura ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1°C

1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" O
115000500203	Cancellazione di tutti i report configurati per la l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Temperatura estrema (NEGO680) Informazione sul sensore

Denominazione del modello	Cels'O
Riferimento WIT	NEGO680
Descrizione	Temperatura Freddo negativo e positivo
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di configurazione	□ NFC
	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	60 min preimpostato e riconfigurabile dal server remoto
Caratteristiche	
Dimensioni (A x L x P)	100 x 100 x 25
Classe IP	IP66
Temperatura d'esercizio	-4040 °C
Stoccaggio	-4040 °C / 2060 % Ur
Parametri	
Temperatura	Intervallo -3035°C / Precisione ±1°C nell'intervallo -309°C
	±0,5°C nell'intervallo 935°C / Risoluzione ±0,1°C
Alimentazione	
Pile	Pila al litio fornita (3,6V / 3600 mAh)
Autonomia in un intervallo di 1025°C	Superiore a 7 anni

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> di funzionamento: contatto Reed e indicatori luminosi.

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

Manuale d'uso – LoRaWAN

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE- Cels'O Temperatura estrema» attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

o Temperatura (attuale, minima e massima) in °C

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106040280000029800a85a0480064	Report della temperatura ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1°C
1150005000	Riavvio del sensore

115000500201	Rimozione dei report "Standard" configurati per l'"End
	Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point"
	0
115000500203	Cancellazione di tutti i report configurati per l'"End Point"
115000500205	0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Sensore Digitale 10 ingressi e 4 uscite (classe A) (NEGO681) Informazioni sul sensore

Denominazione del modello	IN'O classe A
Riferimento WIT	NEGO681
Descrizione	Permette di leggere 10 Ingressi Digitali di stato o di conteggio, permette
	di pilotare 4 Uscite Digitali. Alimentazione a batteria
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
Alimentazione	Pila al litio saldata (3.6V / 3600 mAh) inclusa
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10 min, 1h, 12h o specificato dalla rete
Caratteristiche	
Dimensioni (A x L x P)	84 x 82 x 55 mm
	IP55
Temperatura d'esercizio	-2050 °C
Stoccaggio	-2050 °C
Parametri	
Ingressi	Numero di ingressi 10
	Impedenza >1 MΩ
	Capacità 1 nF; tipico
	Tensione 0 - 30 V
	Corrente 3,5 μA
	Frequenza 1 - 100 Hz
Uscite	Numero di uscite 4; isolazione ottica
	Collettore aperto 250mW, lcc=500mA
	Tensione 15V

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Collegamento degli ingressi (x10)

58

Collegamento delle uscite (x4)

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-IN'O 10 ingressi e 4 uscite digitali (classe A)» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).

Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Stato di 10 ingressi digitali che vanno dall'«End Point» 0 al 9,
- Stato di 4 uscite digitali che vanno dall'«End Point» 0 al 3.

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000f00005510800a85a001	Report dello stato dell'ingresso 1 ("End Point" 0), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato
1106000600000010800a85a001	Report di stato dell'uscita 1 ("End Point" 0), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

www.wit-italia.com

Misura di corrente con trasformatore amperometrico (NEGO683) Informazioni sul sensore

Denominazione del modello	INTENS'O
Riferimento WIT	NEGO683
Descrizione	Misura della corrente (TA apribile) per ripartizione dei consumi
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	1h, 12h specificato dalla rete
Caratteristiche	
Dimensioni (A x L x P)	84 x 82 x 55
Classe IP	IP65
Temperatura d'esercizio	-2060 °C
Stoccaggio	-2060 °C – Umidità < 75% RH
Parametri	
TA apribile	Anello TA 41 x 29,5 x 26 mm; per conduttori isolati fino a 9 mm di diametro.
	Gamma di monitoraggio Tensione di rete 110V, 230V, 380V o 400Volts AC 50 / 60 Hz.
	Risoluzione 0.1 A nell'intervallo da 1 a 20 A
	Corrente massima: 70 ARMS
Alimentazione	
Pile	Pila al litio fornita (3,6V / 3600 mAh)
Autonomia in un intervallo	> 10 anni: 1 trasmissione ogni ora
di 1025°C	> 7 anni: 1 trasmissione ogni 4 ore

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosio</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE- INTENS'O Misura della corrente con TA» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).

Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

• Corrente misurata dal TA in A.

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.

Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia Step 3 coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
3106000c80005539800a85a0483f800000	Report della misurazione della corrente, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1 A
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per determinare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: http://support.nke-watteco.com/codec-online/

Presa pilotabile connessa (versione UE) (NEGO684) Informazioni sul sensore

Denominazione del modello	Smart Plug
Riferimento WIT	NEGO684
Descrizione	Presa connessa per la misurazione e il controllo del consumo.
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10 min, 1 h, 12 h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	62 x 114 x 40
Classe IP	/
Temperatura d'esercizio	-2050 °C
Stoccaggio	-2050 °C
Parametri	
Presa connessa	Tensione di funzionamento (VAC): 100-250
	Frequenza (Hz): 50-60
	Capacità di carico controllabile: 16A/250 VAC
Alimentazione	
Rete elettrica	Rete elettrica

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore.

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Smart Plug Presa pilotabile connessa (UE)» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4
 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u>

 Sensore LoRaWAN)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- Stato (attivo o inattivo).
- Dati di consumo energetico (energia attiva e reattiva, potenza attiva e reattiva e numero di campioni).
- Dati sulla qualità del segnale (frequenza (corrente, minima e massima), VRMS (corrente, minima e massima), VPeak (corrente, minima e massima), soglia di sovratensione, soglia di caduta di tensione, numero di cadute di tensione).

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.

Step 3 Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1150000600	Spegne il relè (dispositivo elettrico non alimentato)
1150000601	Accende il relè (dispositivo elettrico alimentato)
1150000602	Inverte il relè, in funzione del suo stato precedente
1106000600000010800a85a001	Segnalazione dello stato del relè, ogni 24 ore al massimo, ogni 10 minuti su un cambiamento di stato
1106005200000041800a85a00c00000a	Rapporto di consumo, ogni 24 ore al massimo, ogni 10 minuti su una variazione di energia attiva di
000000000000000	10 Wh
1106805200000041800a85a018000000	Rapporto sulla qualità del segnale, ogni 24 ore al
0000000640000000000000000000000	massimo, ogni 10 minuti su una variazione VRMS di 10 V
00000000	
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Conta impulsi (1 ingresso) (NEGO687) Informazioni sul sensore

Denominazione del modello	SO
Riferimento WIT	NEGO687
Descrizione	Dedicato al conteggio degli impulsi dei contatori (1 ingresso)
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
Alimentazione	Pila al litio saldata (3,6V / 3600 mAh) fornita
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10 min, 1 h, 12 h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	75x70x21 mm
Classe IP	IP20
Temperatura d'esercizio	-2050 °C
Stoccaggio	-2050 °C
Parametri	
Ingresso	Numero di ingressi: 1
	Impedenza >1 MΩ
	Tensione 0 – 75 V

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: Interruttori e indicatori luminosi</u>

Collegamento dell'ingresso

Manuale d'uso – LoRaWAN

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Pulse SO Conta impulsi (1 ingresso)» attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - o Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

• Stato attuale e il numero di impulsi contati per l'ingresso.

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

Step 1 In Parametrizzazione / IoT, selezionare la sonda desiderata.

- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000f00005510800a85a001	Report sullo stato dell'ingresso, ogni 24 ore al massimo, ogni 10 minuti su cambiamento di stato.
1106000f00040223800a85a000000001	Report del numero di impulsi, ogni 24 ore al massimo, ogni 10 minuti su singolo incremento
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Conta impulsi (3 ingressi) (NEGO688)

Informazioni sul sensore

Denominazione del modello	Pulse Sens'O outdoor
Riferimento WIT	NEGO688
Descrizione	Dedicato al conteggio degli impulsi di contatori esterni (3 ingressi)
Classe LoRaWAN™	A
Metodi di attivazione	☑Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
Alimentazione	Pila litio (3,6V / 3600 mAh)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10 min, 1h, 12h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	84x82x55 mm
Classe IP	IP55
Temperatura d'esercizio	-2050 °C
Stoccaggio	-2050 °C
Parametri	
Ingressi	Numero di ingressi: 3
	Impedenza >1 MΩ
	Tensione 0 - 30 V
Alimentazione	
Pila	3,6V / 1200mAh – pila litio fornita

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Collegamento degli ingressi

72
Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Sens'O Conta impulsi Outdoor (3 ingressi)» attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Stato attuale e il numero di impulsi contati per l'ingresso 1
- o Stato attuale e il numero di impulsi contati per l'ingresso 2
- o Stato attuale e il numero di impulsi contati per l'ingresso 3

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.

Step 3 Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000f00005510800a85a001	Report sullo stato dell'ingresso 1 (« End Point » 0), ogni 24 ore al massimo, ogni 10 minuti su cambiamento di stato
1106000f00040223800a85a000000001	Report del numero di impulsi dell'ingresso 1 (« End Point » O), ogni 24 ore al massimo, ogni 10 minuti su singolo incremento
3106000f00005510800a85a001	Report sullo stato dell'ingresso 2 (« End Point » 1), ogni 24 ore al massimo, ogni 10 minuti su cambiamento di stato
3106000f00040223800a85a000000001	Report del numero di impulsi dell'ingresso 2 (« End Point » 0), ogni 24 ore al massimo, ogni 10 minuti su singolo incremento
5106000f00005510800a85a001	Report sullo stato dell'ingresso 3 (« End Point » 2), ogni 24 ore al massimo, ogni 10 minuti su cambiamento di stato
5106000f00040223800a85a000000001	Report del numero di impulsi dell'ingresso 3 (« End Point » 2), ogni 24 ore al massimo, ogni 10 minuti su singolo incremento
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

Ingresso analogico 0-10 V o 4-20 mA (NEGO690) Informazioni sul sensore

Denominazione del modello	Press'O
Riferimento WIT	NEGO690
Descrizione	Rilevamento del valore analogico 0-10V o 4-20mA
Classe LoRaWAN™	A
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
Alimentazione	Pila litio rimovibile (3,6V / 3600 mAh) e/o alimentazione
	esterna (9V – 24 V / 300 mW)
	⊠Protocole LoRaWAN™
Metodi di	
configurazione	Bluetooth
	☐ Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10min, 1 h, 12 h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	84x82x55 mm
Classe IP	IP55
Temperatura d'esercizio	-2050 °C
Stoccaggio	-2050 °C
Parametri	
Ingressi	Numero di ingressi 2:
	1 ingresso 4-10 mA <u>o</u> 1 ingresso 0-10V (i 2 ingressi non possono
	essere utilizzati contemporaneamente)
Uscite d'alimentazione	Tensione di alimentazione 4-20mA: 10V
	Tensione di alimentazione 0-10V: 14V
Alimentazione	
Pile	3,6V / 1200mAh – pila Litio fornita

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Collegamento degli ingressi

4-20mA

Alimentazione proveniente dal Press'O

www.wit-italia.com

Manuale d'uso – LoRaWAN

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE- Press'O Ingresso analogico 0-10V o 4-20mA» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Valore dell'ingresso in corrente 4-20 mA
- o Valore dell'ingresso in tensione 0-10 V

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000c80005539800a85a0483f8000 00	Report sull'ingresso 4-20 mA, ogni 24 ore al massimo, ogni 10 minuti su un cambio di 1 mA
3106000c80005539800a85a04842c800 00	Report sull'ingresso 0-10 V, ogni 24 ore, ogni 10 minuti su un cambiamento di 100 mV
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

www.wit-italia.com

Rilevamento apertura Skydome (NEGO692)

Informazioni sul sensore

Denominazione del modello	Skydome
Riferimento WIT	NEGO692
Descrizione	Misura l'inclinazione di uno skydome per determinare la sua apertura
Classe LoRaWAN™	A
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
Alimentazione	Pila al litio saldata (3,6V / 3600 mAh)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	Da Oh a 23h intervallo di 1h
	o da 0g a 7g intervallo di 1g
Caratteristiche	
Dimensioni (A x L x P)	92x92x55 mm
Classe IP	IP65
Temperatura d'esercizio	-2060 °C
Stoccaggio	-2060 C
Parametri	
Caratteristiche	Intervallo di controllo dell'inclinazione da 0 a 180°
	Risoluzione 1°
	Precisione 2°

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Skydome Rilevamento apertura skydome» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono: Angolo di apertura legato al movimento verticale del tetto apribile

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000c80005539800a85a04841200	Report dell'angolo di apertura, ogni 24 ore al massimo, ogni 10
000	minuti su una variazione di 10°

1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" O
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

Temperatura indoor, depressione (NEGO693) Informazioni sul sensore

Denominazione del modello	Ventil'O
Riferimento WIT	NEGO693
Descrizione	Misurazione della temperatura interna e della depressione delle scatole di ventilazione
Classe LoRaWAN™	A
Metodi di attivazione	☑Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
Alimentazione	Pila al litio saldata (3,6V / 3600 mAh)
	⊠Protocole LoRaWAN™
Metodi di configurazione	□ NFC
	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	Da 10 minuti a 7 giorni (default 6 ore)
Caratteristiche	
Dimensioni (A x L x P)	92x92x55 mm
Classe IP	IP65
Temperatura d'esercizio	-2060 °C
Stoccaggio	-2060 °C
Parametri	
Temperatura	Intervallo di misura: -2060°C
	Precisione: ± 2°C da -1060°C
	Risoluzione: 0.1°C
Pressione	Intervallo di misura: da 0 a 500 Pa
	Precisione: ± 10 Pa da 0 a 200 Pa o ± 5,5% da 200 Pa a 500 Pa
	Risoluzione: 1 Pa

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE- Ventil'O Temperatura indoor, depressione» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Temperatura (attuale, minima e massima) in °C
- Pressione differenziale (attuale, minima e massima) in Pa

Valore medio, minimo e massimo delle pressioni differenziali in Pa

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.

Step 3 Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106040200000029800a85a00064	Report della temperatura, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1°C
1106800800000029800a85a00064	Report della pressione differenziale, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 100 Pa
1106800800010029800a85a000c8	Report del valore medio, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 200 Pa
1106800800010129800a85a00064	Report del valore minimo, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 100 Pa
1106800800010229800a85a00064	Report del valore massimo, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 100 Pa
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" O

Sensore per battente (NEGO695)

Informazione sul sensore

Denominazione del modello	Magnet'O
Riferimento WIT	NEGO695
Descrizione	Rilevamento dell'apertura di una finestra o di una porta
Classe LoRaWAN™	A
Metodi di attivazione	☑Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
Alimentazione	Pila al litio saldata (3,6V / 1200 mAh) fornita
	⊠Protocole LoRaWAN™
Metodi di configurazione	□ NFC
	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10min, 1h, 12h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	75x70x21 mm
Classe IP	IP20
Temperatura d'esercizio	-2040 °C
Stanografia	
Stoccaggio	-2040 C
Parametri	
Ingressi	Numero di ingressi: 1
	Impedenza >1 MΩ
	Tensione 0 - 75 V

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE- Magnet'O Sensore per battente» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- Step 3 Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

o Stato attuale e numero di cambiamenti conteggiati

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.

Step 3 Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000f00005510800a85a001	Report di stato dell'ingresso, ogni 24 ore al massimo, ogni 10 minuti su un cambio di stato
1106000f00040223800a85a000000001	Riporta il numero di cambiamenti di stato, ogni 24 ore ore, ogni 10 minuti su un singolo incremento
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

Temperatura, Umidità, Luminosità (indoor) (NEGO696) Informazioni sul sensore

Denominazione del modello	Thr
Riferimento WIT	NEGO696
Descrizione	Misura la temperatura, l'umidità relativa e l'indicatore di luce in ambienti interni
Software integrato	
Classe LoRaWAN™	A
Metodi di attivazione	Activation By Personalization (ABP)
Metodi di configurazione	 ☑ Protocole LoRaWAN™ □ NFC □ Bluetooth □ Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10min, 1h, 12h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	81 x 73 x 20
Classe IP	/
Temperatura d'esercizio	-2050 °C
Stoccaggio	-2050 °C / 2060% Ur
Parametri	
Temperatura	Intervallo -2050°C Precisione < +/-0.5 da 0° a +65°C; < +/-1 da -30°C a 0°C e da +65°C a +90°C; < +/-2 sotto -30°C e sotto +90°C Risoluzione 1/100 °C
Umidità	Intervallo 0100 % Ur Precisione < +/- 3 da 20% Ur a 80% Ur; < +/- 5 sotto 20% Ur e oltre 80% Ur Risoluzione 4%.
Luminosità	Indicatore: livello di luminosità in %
Alimentazione	·
Pila	Batteria al litio saldata (3,6V / 1100 mAh) - ricarica fotovoltaica

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Pulsanti e indicatori luminosi</u>

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Thr Temperatura, Umidità, Luminosità indoor» attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- Step 3 Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Temperatura (attuale, minima e massima) in °C
- o Umidità relativa (attuale, minima e massima) in %
- o Luminosità in %

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106040200000029800a85a00064	Report sulla temperatura, ogni 24 ore al massimo,
	ogni to minuti su un campiamento ul 1 C

1106040500000021800a85a001f4	Report sull'umidità relativa, ogni 24 ore al massimo, ogni 10 minuti per una variazione del 5%
1106000c00005539800a85a040a0000 0	Rapporto di luminosità, ogni 24 ore al massimo, ogni 10 minuti su una variazione del 5%
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" O
115000500203	Cancellazione di tutti i report configurati per l'"End Point" O

Temperatura, Umidità (indoor) (NEGO697)

Informazione sul sensore

Denominazione del modello	Temperature and Humidity Indoor	
Riferimento WIT	NEGO697	
Descrizione	Misura la temperatura e l'umidità relativa in ambienti interni	
Software integrato		
Classe LoRaWAN™	A	
Metodi di attivazione	☑Activation By Personalization (ABP)	
supportati	⊠Over-The-Air Activation (OTAA)	
	⊠Protocole LoRaWAN™	
Metodi di	□ NFC	
configurazione	Bluetooth	
	Testina ottica	
Campo di applicazione	FCCT	
Ciclo di trasmissione	10 min, 1h, 12h o definito dalla rete	
Caratteristiche		
Dimensioni (A x L x P)	80 x 80 x 25	
Classe IP	/	
Temperatura d'esercizio	040 °C	
Stoccaggio	040 °C / 2060% Ur	
Parametri		
Temperatura	Intervallo 040 °C	
	Precisione +/- 0,3 °C	
	Risoluzione -/+ 0,2 °C	
Umidità	Intervallo 020 % Ur	
	Precisione +/- 0,3%.	
	Risoluzione -/+ 0,5%.	
Alimentazione		
Pile	Pila al litio rimovibile (3,6V / 3600 mAh)	

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

Manuale d'uso – LoRaWAN

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Temperatura e umidità Indoor» attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Temperatura (attuale, minima e massima) in °C
- o Umidità relativa (attuale, minima e massima) in %

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106040280000029800a85a0480064	Rapporto sulla temperatura, massimo ogni 24 ore, ogni 10 minuti su un cambiamento di 1°C
1106040580000021800a85a04803e8	Rapporto di umidità, ogni 24 ore al massimo, ogni 10 minuti su una variazione del 10%.

Manuale d'uso – LoRaWAN

1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

Temperatura a distanza (1 sonda) (NEGO698)

Informazione sul sensore

Denominazione del modello	Remote temperature sensor
Riferimento WIT	NEGO698
Descrizione	Misura della temperatura con una sonda di 5 metri
Software integrato	
Classe LoRaWAN™	А
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10min, 1h, 12h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	84 x 82 x 55
Classe IP	/
Temperatura d'esercizio	-2060 °C
Stoccaggio	-2060°C / 2060% Ur
Parametri	
Temperatura	Intervallo -2090 °C
	Precisione +/- 1°C nell'intervallo [-20+40°C]
	Risoluzione -/+ 0,2 °C
	Sensore NTC remoto su un cavo di 5m
Alimentazione	
Pile	Pila al litio saldata (3.6V / 3600 mAh)

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE Temperatura a distanza (1 sonda)» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

o Temperatura (attuale, minima e massima) in °C

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106040280000029800a85a0480064	Report sulla temperatura, ogni 24 ore al massimo, ogni 10 minuti su un cambiamento di 1°C
1150005000	Riavvio del sensore

115000500201	Rimozione dei report "Standard" configurati per l'"End
	Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point"
	0
115000500203	Cancellazione di tutti i report configurati per l'"End Point"
	0

Temperatura a distanza (2 sonde) (NEGO699)

Informazione sul sensore

Denominazione del modello	Remote temperature 2 sensors	
Riferimento WIT	NEGO699	
Descrizione	Misura della temperatura con due sonde di 2 metri	
Software		
Classe LoRaWAN™	А	
Metodi di attivazione	☑Activation By Personalization (ABP)	
supportati	⊠Over-The-Air Activation (OTAA)	
	⊠Protocole LoRaWAN™	
Metodi di configurazione	□ NFC	
	Bluetooth	
	Testina ottica	
Campo di applicazione	FCCT	
Ciclo di trasmissione	10mn, 1h, 12h o definito dalla rete	
Caratteristiche		
Dimensioni (A x L x P)	84 x 82 x 55	
Classe IP	/	
Temperatura d'esercizio	-2060 °C	
Stoccaggio	-2060°C / 2060% Ur	
Parametri		
Temperatura	Intervallo -2090 °C	
	Precisione +/- 1°C nell'intervallo [-20+40°C]	
	Risoluzione -/+ 0,2 °C	
	Sensori NTC remoti su un cavo di 2m (x2)	
Alimentazione		
Pile	Pila al litio saldata (3.6V / 3600 mAh)	

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo « NKE Temperatura a distanza (2 sonde)» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Temperatura 1 (attuale, minima e massima) in °C
- o Temperatura 2 (attuale, minima e massima) in °C

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
	Report della temperatura per "End Point" 0 (sensore NTC
1106040280000029800a85a0480064	numero 1), ogni 24 ore al massimo, ogni 10 minuti su una
	variazione di 1°C

Manuale d'uso – LoRaWAN

3106040280000029800a85a0480064	Report della temperatura per "End Point" 1 (sensore NTC numero 2), ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1°C
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

Sensore Digitale 10 ingressi e 4 uscite (classe C) (NEGO700) Informazioni sul sensore

Denominazione del modello	IN'O classe C
Riferimento WIT	NEGO700
Descrizione	Permette di leggere 10 DI di stato o di conteggio, permette di pilotare 4
	DO. Alimentazione da rete elettrica
Classe LoRaWAN™	C
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
Alimentazione	9V-15V / 300mW – Alimentazione esterna
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10min, 1h, 12h o specificato dalla rete
Caratteristiche	
Dimensioni (A x L x P)	84 x 82 x 55 mm
Classe IP	IP55
Temperatura d'esercizio	-2050 °C
Stoccoggio	
Stoccaggio	-2050 C
Parametri	
Ingressi	Numero di ingressi 10
	Impedenza >1 MΩ
	Capacità 1 nF; tipico
	Tensione 0 - 30 V
	Corrente 3,5 μA
	Frequenza 1 - 100 Hz
Uscite	Numero di uscite 4; isolazione ottica
	Collettore aperto 250mW, Icc=500mA
	Tensione 15V

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Collegamento degli ingressi (x10)

Collegamento delle uscite (x4)

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo « NKE-IN'O 10 ingressi e 4 uscite digitali (classe C)» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Stato di 10 ingressi digitali che vanno dall'«End Point» 0 al 9,
- o Stato di 4 uscite digitali che vanno dall'«End Point» 0 al 3

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000f00005510800a85a001	Report dello stato dell'ingresso 1 ("End Point" 0), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato
1106000600000010800a85a001	Report di stato dell'uscita 1 ("End Point" 0), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

Temperatura estrema remota (2m) (NEGO703) Informazione sul sensore

Denominazione del modello	CELS'O, sonda 200 cm	
Riferimento WIT	NEGO703	
Descrizione	Temperatura Freddo negativo e positivo con sonda di 2m	
Software integrato		
Classe LoRaWAN™	A	
Metodi di attivazione	⊠Activation By Personalization (ABP)	
supportati	⊠Over-The-Air Activation (OTAA)	
	⊠Protocole LoRaWAN™	
Metodi di	□ NFC	
configurazione	Bluetooth	
	Testina ottica	
Campo di applicazione	FCCT	
Ciclo di trasmissione	60 min preimpostato e riconfigurabile dal server remoto	
Caratteristiche		
Dimensioni (A x L x P)	100 x 100 x 25	
Classe IP	IP66	
Temperatura d'esercizio	-4040 °C	
Stoccaggio	-4040 °C / 2060 % Ur	
Parametri		
Temperatura	Intervallo -3035°C / Precisione ±1°C nell'intervallo -309°C	
	±0,5°C nell'intervallo 935°C / Risoluzione ±0,1°C	
Alimentazione		
Pile	Pila al litio fornita (3,6V / 3600 mAh)	
Autonomia in un intervallo di 1025°C	Superiore a 7 anni	

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi.</u>

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE- CELS'O Temperatura estrema sonda 2m» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

o Temperatura (attuale, minima e massima) in °C

Configurazione del sensore

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106040200000029800a85a00064	Report della temperatura ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1°C

1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" O
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

Conta impulsi waterproof (3 ingressi) (NEGO707) Informazioni sul sensore

Denominazione del modello	Pulse Sens'O waterproof
Riferimento WIT	NEGO707
Descrizione	Dedicato al conteggio degli impulsi in ambienti umidi (3 ingressi)
Classe LoRaWAN™	A
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10min, 1h, 12h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	84x82x55 mm
	1255
Temperatura d'esercizio	-2050 °C
Stoccaggio	-2050 °C
Parametri	
Ingressi	Numero di ingressi: 3
	Impedenza >1 MΩ
	Tensione 0 - 30 V
Alimentazione	
Pile	3,6V / 1200mAh – pila litio fornita

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Collegamento degli ingressi

www.wit-italia.com
Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Sens'O Conta impulsi waterproof (3 ingressi) » attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Stato attuale dell'ingresso e numero di impulsi contati per l'ingresso 1
- o Stato attuale dell'ingresso e numero di impulsi contati per l'ingresso 2
- Stato attuale dell'ingresso e numero di impulsi contati per l'ingresso 3

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000f00005510800a85a001	Report dello stato dell'ingresso 1 ("End Point" 0), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato.
110000000000000000000000000000000000000	
1106000f00040223800a85a00000001	Report del conteggio degli impuisi dell'ingresso 1 ("End
	Point" 0), ogni 24 ore massimo, ogni 10 minuti su
	incremento
	Report dello stato dell'ingresso 2 ("End Point" 1), ogni 24
3106000f00005510800a85a001	ore massimo, ogni 10 minuti su un cambiamento di stato.
	Report del conteggio degli impulsi dell'ingresso 2 ("End
3106000f00040223800a85a00000001	Point" 1), ogni 24 ore massimo, ogni 10 minuti su
	incremento
	Report dello stato dell'ingresso 3 ("End Point" 2), ogni 24 ore
	massimo, ogni 10 minuti su un cambiamento di stato
5106000f00005510800a85a001	nassino, ogn to nindt sa an campianento a stato.
	Report del conteggio degli impulsi dell'ingresso 3 ("End Point"
E106000f00040222800-8E-00000001	2), ogni 24 ore massimo, ogni 10 minuti su incremento
5106000100040223800485400000001	Piannia del sensore
1150005000	
115000500201	Rimozione dei report "Standard" configurati per l'"End
1100000000101	Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
112000200202	
	Cancellazione di tutti i report configurati per l'"End Point"
115000500203	0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Temperatura interna, depressione e ingresso pressostato meccanico esterno. (NEGO709)

Informazioni sul sensore

Denominazione del modello	Ventil'O – ingresso pressostato meccanico esterno
Riferimento WIT	NEGO709
Descrizione	Misurazione della temperatura interna e della depressione delle casse di ventilazione con ingresso di un pressostato meccanico esterno
Classe LoRaWAN™	A
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	Da 10 minuti a 7 giorni (default 6 ore)
Caratteristiche	
Dimensioni (A x L x P)	92x92x55 mm
Classe IP	IP65
Temperatura d'esercizio	-2060 °C
Stoccaggio	-2060 °C
Parametri	
Temperatura	Intervallo di misura: -2060°C
	Precisione: ± 2°C da -1060°C
	Risoluzione: 0.1°C
Pressione	Intervallo di misura: da 0 a 500 Pa
	Precisione: ± 10 Pa da 0 a 200 Pa o ± 5,5% da 200 Pa a 500 Pa
	Risoluzione: 1 Pa
Alimentazione	
Pile	3.6V / 1200mAh - batteria al litio inclusa

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Ventil'O Temperatura indoor, depressione e ingresso pressostato meccanico est.» attraverso il menù laterale «Aggiungere un profilo».
- Step 2 Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - o Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- o Temperatura (attuale, minima e massima) in °C
- o Pressione differenziale (attuale, minima e massima) in Pa
- o Valore medio, minimo e massimo delle pressioni differenziali in Pa
- o Stato dell'ingresso del pressostato (booleano).

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.

Step 3 Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106040200000029800a85a00064	Report della temperatura ("End Point" 0), ogni 24 ore al massimo, ogni 10 minuti su una variazione di 1°C
110680080000029800a85a00064	Report della pressione differenziale ("End Point" 0),
	ogni 24 ore al massimo, ogni 10 minuti su una
	variazione di 100 Pa
1106800800010029800a85a000c8	Report del valore medio, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 200 Pa
1106800800010129800a85a00064	Report del valore minimo, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 100 Pa
1106800800010229800a85a00064	Report del valore massimo, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 100 Pa
1106000f00005510800a85a001	Report sullo stato del pressostato, ogni 24 ore al massimo ogni 10 minuti su un cambiamento di stato
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Conta impulsi luminosi (NEGO710)

Informazione sul sensore

Denominazione del modello	Flash'O
Riferimento WIT	NEGO710
Descrizione	Conteggio dei degli impulsi luminosi di un contatore elettronico
Classe LoRaWAN™	A
Metodi di attivazione	Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Caratteristiche	
Dimensioni (AH x L x P)	82 x 82 x 85 mm
Classe IP	IP55
Temperatura di	-2050 °C
funzionamento	
Stoccaggio	-2050 °C
Parametri	
Ingressi	Lettura a distanza degli impulsi luminosi da qualsiasi contatore elettronico
	(0,5 m): acqua, gas, elettricità, energia
Alimentazione	
Pile	3.6V / 1200 mAh - pila al litio inclusa

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Flash'O Conta impulsi luminosi» attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- **Step 4** In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

o Stato attuale dell' impulso e numero di impulsi contati

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000f00005510800a85a001	Report dello stato dell'impulso luminoso, ogni 24 ore al massimo, ogni 10 minuti su una variazione di stato.
1106000f00040223803c85a00000000a	Report del numero di impulsi di luce, ogni 24 ore al massimo, ogni 10 minuti su una variazione di 10 impulsi

1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l' "End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Comando Filo Pilota (NEGO716)

Informazioni sul sensore

Denominazione del modello	Fil Pilote
Riferimento WIT	NEGO716
Descrizione	Permette il controllo di convettori tramite il filo pilota
Classe LoRaWAN™	С
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodi di	□ NFC
configurazione	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	
Caratteristiche	76 x 41 x 17 mm
Dimensioni (A x L x P)	
Classe IP	-2050 °C
Temperatura d'esercizio	-2050 °C
Parametri	
Comando	Invio Comandi: Comfort / Eco / Antigelo / Stop / Comfort -1 /
	Comfort -2
Alimentazione	
Alimentazione di rete	230VAC

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE Comando filo pilota» attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u> <u>Sensore LoRaWAN</u>)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

• Stato attuale dell'uscita "Pilot Wire", cioè la modalità Filo Pilota attiva sull'uscita.

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106001300005520800f803c01	Report sullo stato dell'uscita "Filo Pilota ", ogni 24 ore al massimo ogni 10 minuti su una variazione dello stato.
1105001300552000	Invio del comando "Comfort" all'apparecchiatura "Filo Pilota" collegata (se accoppiato a un relè elettrico, questo comando corrisponde al modo "OFF")

1105001300552001	Invio del comando "Eco" al dispositivo " Filo Pilota collegato (se accoppiato a un relè elettrico, questo comando corrisponde al modo "ON").
1105001300552002	Invio del comando "Antigelo" all'apparecchiatura "Filo pilota" collegata
1105001300552003	Invio del comando "Stop" all'apparecchiatura "Filo pilota" collegata
1105001300552004	Invio del comando " Confort -1 °C " all'apparecchiatura "Filo pilota" collegata
1105001300552005	Invio del comando "Confort -2 °C " all'apparecchiatura "Filo pilota" collegata
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Conta impulsi ATEX (3 ingressi) (NEGO719)

Informazioni sul sensore

Denominazione del modello	Pulse Sens'O ATEX zone 1, Outdoor
Riferimento WIT	NEGO719
Descrizione	Specifico per la misurazione del GAS. Contatori esterni a impulsi
	(3 ingressi)
Classe LoRaWAN™	A
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodo di	□ NFC
configurazione	Bluetooth
	🗆 Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10 min, 1h, 12h o definito dalla rete
Caratteristiche	
Dimensioni (A x L x P)	84x82x55 mm
Classe IP	IP55
Temperatura d'esercizio	-2050 °C
Stoccaggio	-2050 °C
Parametri	
Ingressi	Numero di ingressi: 3
	Impedenza >1 MΩ
	Tensione 0 - 30 V
Alimentazione	
Pile	3,6V / 1200mAh – pila litio fornita

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Collegamento degli ingressi

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Sens'O Conta impulsi ATEX (3 Ingressi)» attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4
 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u>

 Sensore LoRaWAN)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- \circ $\;$ Stato attuale dell'ingresso e numero di impulsi contati per l'ingresso 1
- o Stato attuale dell'ingresso e numero di impulsi contati per l'ingresso 2
- o Stato attuale dell'ingresso e numero di impulsi contati per l'ingresso 3

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.
- **Step 3** Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

Frame Payload del «Downlink»	Descrizione della configurazione
1106000f00005510800a85a001	Report dello stato dell'ingresso 1 ("End Point" 0), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato.

1106000f00040223800a85a000000001	Report del conteggio degli impulsi dell'ingresso 1 ("End Point" 0), ogni 24 ore massimo, ogni 10 minuti su incremento
3106000f00005510800a85a001	Report dello stato dell'ingresso 2 ("End Point" 1), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato.
3106000f00040223800a85a000000001	Report del conteggio degli impulsi dell'ingresso 2 ("End Point" 1), ogni 24 ore massimo, ogni 10 minuti su incremento
5106000f00005510800a85a001	Report dello stato dell'ingresso 3 ("End Point" 2), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato.
5106000f00040223800a85a000000001	Report del conteggio degli impulsi dell'ingresso 3 ("End Point" 2), ogni 24 ore massimo, ogni 10 minuti su incremento
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

Conta impulsi waterproof ATEX (3 ingressi) (NEGO720) Informazioni sul sensore

Denominazione del modello	Pulse Sens'O ATEX zone 1, Waterproof
Riferimento WIT	NEGO720
Descrizione	Specifico per la misurazione del GAS. Contatori esterni a impulsi in
	ambiente umido (3 ingressi)
Classe LoRaWAN™	A
Metodi di attivazione	⊠Activation By Personalization (ABP)
supportati	⊠Over-The-Air Activation (OTAA)
	⊠Protocole LoRaWAN™
Metodo di	□ NFC
configurazione	Bluetooth
	Testina ottica
Campo di applicazione	FCCT
Ciclo di trasmissione	10min, 1h, 12h o definito dalla rete.
Caratteristiche	
Dimensioni (A x L x P)	84x82x55 mm
Classe IP	IP68
Temperatura d'esercizio	-2050 °C
Stoccaggio	-2050 °C
Parametri	
Ingressi	Numero di ingressi: 3
	Impedenza >1 MΩ
	Tensione 0 - 30 V
Alimentazione	
Pile	3,6V / 3600mAh – pila litio fornita

Messa in funzione

Fare riferimento al manuale d'uso del produttore per l'installazione fisica del sensore. Una volta che il sensore è installato correttamente, è necessario seguire le procedure descritte nel capitolo: <u>Modalità</u> <u>di funzionamento: contatto Reed e indicatori luminosi</u>

Collegamento degli ingressi

Contatto alimentato

Utilizzo su ULI REDY

Per accoppiare il sensore con il REDY, è necessario effettuare alcune impostazioni.

- **Step 1** In Parametrizzazione / IoT, creare un profilo «NKE-Sens'O Conta impulsi waterproof ATEX (3 ingressi)» attraverso il menù laterale «Aggiungere un profilo».
- **Step 2** Cliccare sul bottone «Aggiungere» della barra degli strumenti per creare una nuova sonda.
- **Step 3** Scegliere il tipo di configurazione del sensore nella scheda «Parametri»:
 - Tipo di configurazione **OTAA**: è necessario compilare il campo Device EUI e poi i due campi Application EUI e Application KEY.
 - Tipo di configurazione ABP: è necessario compilare il campo Device EUI e poi le informazioni sulla sessione LoRaWAN™, cioè i campi DevAddress, Network Session Key, Application Session Key (eventualmente i contatori FnctUp e FnctDown in caso di manutenzione del dispositivo).
- Step 4
 In Parametrizzazione / Risorse, aggiungere una risorsa Sensore LoRaWAN (rif. capitolo <u>5 Risorsa</u>

 Sensore LoRaWAN)

I dati decodificati e disponibili nella risorsa Sensore LoRa sono:

- \circ $\;$ Stato attuale dell'ingresso e numero di impulsi contati per l'ingresso 1
- o Stato attuale dell'ingresso e numero di impulsi contati per l'ingresso 2
- o Stato attuale dell'ingresso e numero di impulsi contati per l'ingresso 3

Configurazione del sensore

Dopo aver accoppiato il sensore, può essere configurato inviando un "Downlink". A tal fine, è necessario eseguire i seguenti passi per garantire che il sensore trasmetta i dati desiderati entro i limiti di tempo definiti.

- **Step 1** In Parametrizzazione / IoT, selezionare la sonda desiderata.
- **Step 2** Nella scheda Downlink, cliccare su «Inviare un Downlink». La finestra che si apre permette di configurare il "Downlink" e di memorizzare il Payload da inviare alla sonda per configurarla.

Step 3 Inviare i "Downlink" desiderati, controllando per ognuno che il comportamento del sensore sia coerente con il funzionamento desiderato. Di seguito sono elencati una serie di Payload comunemente utilizzati:

www.wit-italia.com

Frame Payload del «Downlink»	Descrizione della configurazione
1106000f00005510800a85a001	Report dello stato dell'ingresso 1 ("End Point" 0), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato.
1106000f00040223800-85-000000001	Report del conteggio degli impulsi dell'ingresso 1 ("End
110000100040223800883800000001	Point" 0), ogni 24 ore massimo, ogni 10 minuti su incremento
3106000f00005510800a85a001	Report dello stato dell'ingresso 2 ("End Point" 1), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato.
3106000f00040223800a85a000000001	Report del conteggio degli impulsi dell'ingresso 2 ("End Point" 1), ogni 24 ore massimo, ogni 10 minuti su incremento
5106000f00005510800a85a001	Report dello stato dell'ingresso 3 ("End Point" 2), ogni 24 ore massimo, ogni 10 minuti su un cambiamento di stato.
5106000f00040223800a85a000000001	Report del conteggio degli impulsi dell'ingresso 3 ("End Point" 2), ogni 24 ore massimo, ogni 10 minuti su incremento
1150005000	Riavvio del sensore
115000500201	Rimozione dei report "Standard" configurati per l'"End Point" 0
115000500202	Rimozione dei report Batch configurati per l'"End Point" 0
115000500203	Cancellazione di tutti i report configurati per l'"End Point" 0

i Per creare i frame di Payload dei sensori NKE, utilizzare lo strumento di generazione online: <u>http://support.nke-watteco.com/codec-online/</u>

ADEUNIS

- Pagina di supporto di Adeunis per ulteriori informazioni sui sensori: <u>https://adeunis.freshdesk.com/en/support/home</u>
- o Documentazione e download del software: <u>https://www.adeunis.com/en/downloads/</u>

Comfort

Descrizione

- Il sensore Adeunis[®] COMFORT è un trasmettitore radio pronto all'uso per misurare la temperatura e l'umidità ambiente.
- Il prodotto trasmette i dati periodicamente o quando vengono superate le soglie alte o basse.
- La configurazione del trasmettitore si effettua, localmente tramite una porta micro-USB
 o a distanza tramite la rete LoRaWAN. Permette in particolare la regolazione della periodicità di trasmissione e delle soglie di allarme.
- o Il sensore COMFORT è alimentato da una batteria interna sostituibile.
- o Dispone inoltre di un pulsante per l'invio di frame quando viene premuto.

Per maggiori informazioni sul sensore Adeunis[®] COMFORT, consultare la <u>User Guide del</u> <u>costruttore</u>.

Il sensore COMFORT è consegnato di default con una configurazione OTAA, che permette all'utente di dichiarare il prodotto dall' ULI REDY.

Presentazione

Pulsante di avvio e pulsante Connesso (funzione input digitale 1)

Passaggio fili (Input Digitale 2)

Dimensioni

Valori in millimetri

Scheda elettronica

configurazione del prodotto

Caratteristiche generali

Parameters	Value
Supply voltage	Nominal 3.6V
Power supply	Integrated battery Li-SOCI2
Operating temperature	-20°C / +60°C
Dimensions	111 x 61 x 40 mm
Weight	102 g
Case	IP20
LoRaWAN Zone	EU 863-870 MHz
LoRaWAN Specification	1.0.2
Max transmit power	14 dBm
Application port (downlink)	1

Caratteristiche del sensore

Characteristics		Unit	
Temperature	Range	-20/+60	°C
	Accuracy	+/- 0.4 between [0-60°C] +/- 1 between [-20-0°C]	
	Resolution	+/- 0.02 at 25°C	
Humidity	Range	10 - 90	% RH (relative humidity in the air, appli- cable between [0-60]°C)
	Accuracy	+/- 2	
	Resolution	0.1 at 25°c	

Tipi di trasmissioni

Il prodotto può misurare la temperatura e l'umidità in una stanza, memorizzare queste informazioni e inviarle secondo tre modalità di trasmissione.

	Trasmissione periodica	Trasmissione su superamenti soglia	Trasmissione periodica e su superamento soglia
Definizione	L'invio periodico permette di raccogliere i dati in un determinato periodo di tempo, di salvarli e di inviarli regolarmente per l'analisi nel tempo.	L'invio di un frame al superamento di una soglia permette di leggere i dati in base a un determinato intervallo e di inviare un allarme solo se una delle soglie è superata.	Mix delle due modalità per poter leggere regolarmente, per ricevere avvisi in caso di superamento della soglia e salvare regolarmente le informazioni per fare l'analisi nel tempo.
Esempio pratico di utilizzo	Voglio che il mio dispositivo legga la temperatura e l'umidità ogni 3 ore, queste informazioni vengono salvate e tutti i miei backup mi vengono inviati una volta al giorno.	Voglio che il mio dispositivo mi invii un allarme quando vengono superati i 24°C nella mia stanza con una lettura ogni 10 minuti. Non voglio un allarme per l'umidità.	Voglio che il mio dispositivo si attivi ogni 10 minuti. Voglio che i dati vengano salvati ogni 3 ore e che le informazioni mi vengano inviate una volta al giorno. Se la temperatura supera i 24°C voglio che mi venga inviato un allarme. Non voglio un allarme per l'umidità.
Configurazione associata	 Periodo di acquisizione (S321) 5400 (5400 secondi = 3 ore) Frequenza di backup (S320) 1 (1 backup ogni 3 ore) Frequenza di trasmissione (S301) 8 (8 X 3 ore = 24 ore) Tipo di allarme T° (S330) 0 (allarme disattivato) Tipo di allarme umidità (S340) 0 (allarme disabilitato) 	 Periodo di acquisizione (S321) 300 (300x2 = 10 minuti) Frequenza di trasmissione (S301) 0 (nessun invio periodico) Definizione soglia alta (S331) 240 (+24°C) Tipo di allarme T° (S330) 1 (soglia alta) Isteresi soglia alta (S330) 20 (2°C) La mia stanza sarà tornata alla temperatura "normale" sotto i 22°C. Tipo di allarme umidità (S340) 0 (allarme disabilitato) 	 Periodo di acquisizione (S321) 300 (300x2 = 10 minuti) Frequenza di backup (S320) 18 (18 x 10 min = 3 ore) Frequenza di trasmissione (S301) 8 (8 x 3 ore = 24 ore) Definizione della soglia alta (S331) 240 (+24°C) Tipo di allarme T° (S330) 1 (soglia alta) Isteresi soglia alta (S332) 20 (2°C) La mia stanza sarà tornata alla temperatura "normale" sotto i 22°C. Tipo di allarme umidità (S340) 0 (allarme disabilitato)

Funzionamento dei LED

Modo	Stato LED rosso	Stato LED verde
Dispositivo in modalità Park/Storage	OFF	OFF
Pressione lunga del pulsante (2 secondi) in modalità	-	ON quando si preme il pulsante per 1
PARK		secondo
Accensione del dispositivo (dopo il rilevamento di	-	Lampeggio veloce 6 cicli 100 ms ON /
una lunga pressione del pulsante)		100 ms OFF
Passaggio alla modalità comando	Acceso fisso*	Acceso fisso*
Processo di accoppiamento	Durante la fase di JOIN: Lampeggio:	Durante la fase di JOIN: Lampeggio:
	50ms ON / 1s OFF	50ms ON / 1s OFF (subito dopo il LED
		rosso)
	Se la fase JOIN è terminata (JOIN	Se la fase JOIN è terminata (JOIN
	ACCEPT): Lampeggio: 50ms ON / 50ms	ACCEPT): lampeggiante: 50ms ON /
	OFF (6x)	50ms OFF (6x) (subito prima del LED
		rosso)
Livello basso della batteria	Lampeggio (500ms ON ogni 60s)	-
Dispositivo non funzionante (ritorno alla fabbrica)	Fisso	-
Pressione del pulsante in modalità OPERATIVA	ON per 500 ms *	ON per 500 ms *
Dispositivo in modalità DEAD	Lampeggio (100ms ON / 100ms OFF) x2	
	ogni 5s	-

* Le luci LED verdi e rosse danno simultaneamente un rendering bianco/giallo attraverso lo chassis.

Temp Descrizione

- Il sensore Adeunis[®] TEMP è un dispositivo radio pronto all'uso per misurare le temperature.
- Questo prodotto è disponibile in due versioni: una versione con un sensore di temperatura ambiente e un sensore di temperatura a contatto remoto e una versione con due sensori di temperatura remoti
- Il prodotto trasmette i dati del sensore periodicamente o in base agli eventi quando vengono superate le soglie alte e/o basse.
- La configurazione del trasmettitore è accessibile dall'utente tramite una porta micro-USB, permettendo in particolare la scelta delle modalità di trasmissione, della periodicità o delle soglie di attivazione.
- $\circ\,$ Il sensore TEMP è alimentato da una batteria interna sostituibile e/o da un'alimentazione esterna.
- Il prodotto è compatibile con la rete LoRaWAN di classe C e può quindi essere utilizzato su questa classe se alimentato dalla rete.

Per ulteriori informazioni sul sensore Adeunis® TEMP, si prega di consultare la User Guide.

Il sensore TEMP è fornito di default con una configurazione OTAA, permettendo all'utente di dichiarare il suo prodotto dalla ULI REDY.

Presentazione

Dimensioni

Valori in millimetri

134

Scheda elettronica

Versioni disponibili

Prodotto con 2 sonde remote:

Caratteristiche generali

Parameters	Value
Working temperature	-25°C / +70°C
Dimensions	132 x 62 x 34mm
Weight	148g 1 Remote probe, 185g 2 remote probes
Casing	IP 68
Radio standards	EN300220-1 et EN300220-2
LoRaWAN network	EU863-870
LoRaWAN class	Class A and Class C (if power by external supply)
Max power transmission	14 dBm
Applicative port number (downlink)	1

Caratteristiche dei sensori

Characteristics	
Ambient probe - temperature range	[-25°C /+70°C]
Remote probe - sensor temperature range	-55°C+155°C
Remote probe - wire temperature range	-30°C+105°C
Remote probe - wire length	2m
Precision [0°C/+60°C]	+/- 0,2°C
Precision [-35°C/0°C]	+/- 0,5°C
Precision [-55°C/-35°C]	-0,6 /+0,8°C
Precision [+60°C/105°C]	+/- 2°C

Non maneggiare il sensore remoto quando non è a temperatura ambiente, poiché ciò potrebbe danneggiare il prodotto. I range di temperatura minima e massima del sensore e del cavo devono essere rispettati.

Tipi di trasmissione

	Trasmissione periodica	Trasmissione su superamenti soglia	Trasmissione periodica e su superamento soglia
Definizione	L'invio periodico permette di raccogliere i dati in un determinato periodo di tempo, di salvarli e di inviarli regolarmente per l'analisi nel tempo.	L'invio di un frame al superamento di una soglia permette di leggere i dati in base a un determinato intervallo e di inviare un allarme solo se una delle soglie è superata	Mix delle due modalità per poter leggere regolarmente, per ricevere avvisi in caso di superamento della soglia e salvare regolarmente le informazioni per fare l'analisi nel tempo.
Esempio pratico di utilizzo	Voglio misurare le temperature sulle 2 sonde ogni 30 minuti. Voglio ridurre al minimo il numero di frame al giorno e ottimizzare l'autonomia, quindi preferisco inviare il massimo dei dati in ogni frame senza perdere dati.	Voglio che il prodotto mi mandi un allarme se la temperatura è inferiore a 10°C sulla sonda 1.	Voglio conoscere la temperatura sulle 2 sonde durante il giorno ed essere informato se la temperatura scende sotto i 10°C sulla sonda 1. Il prodotto mi invierà un frame due volte al giorno con la temperatura misurata ogni ora e un allarme se la temperatura è sotto i 10°C sulla sonda 1.
Configurazione associata	 Periodo di campionamento (S321) 900 (900s x2 =1800 secondi quindi 30 minuti) Numero di campioni prima del salvataggio (S320) 1 (1 salvataggio ad ogni lettura) Numero di salvataggi prima della trasmissione (S301) 12 (12 salvataggi per frame) Allarme sonda 1 (S330) 0 (allarme disattivato) Allarme sonda 2 (S340) 0 (allarme disabilitato) 	 Periodo di campionamento (S321) 300 (300s x2 =10 minuti) Numero di salvataggi prima della trasmissione (S301) 0 (nessuna trasmissione periodica) Temperatura di allarme sulla sonda 1 (S330) 1 (soglia bassa) Soglia bassa sulla sonda 1 (S333) 100 (in decimi di °C) Isteresi di soglia bassa sulla sonda 1 (S334) 50 (in decimi di °C) l'allarme si attiva solo se la temperatura supera i 15 °C. 	 Periodo di campionamento (S321) 300 (300s x2 =10 min) Numero di campioni prima del salvataggio (S320) 6 (6 x 10 min = 1h) Numero di salvataggi prima della trasmissione (S301) 12 (12 x 1h = 12h) Temperatura di allarme sulla sonda 1 (S330) 1 (soglia bassa) Soglia bassa sulla sonda 1 (S333) 100 (in decimi di °C) Isteresi di soglia bassa sulla sonda 1 (S334) 50 (in decimi di °C) l'allarme viene attivato solo se la temperatura supera i 15 °C.

Funzionamento dei LED

Modo	Stato LED rosso	Stato LED verde
Dispositivo in modalità Park/Storage	OFF	OFF
Processo di rilevamento del magnete	OFF	ON dal rilevamento del magnete per 5
		secondi
Avvio del prodotto (dopo il rilevamento del	OFF	Lampeggio rapido 6 cicli, 100 ms ON /
magnete)		100 ms OFF
Processo di accoppiamento	Durante la fase di JOIN: Lampeggio:	
	50ms ON / 1s OFF	Durante la fase di JOIN: Lampeggio:
		50ms ON / 1s OFF (subito dopo il LED
	Se la fase JOIN è terminata (JOIN	rosso)
	ACCEPT): Lampeggio: 50ms ON / 50ms	Se la fase JOIN è terminata (JOIN
	OFF (6x)	ACCEPT): lampeggiante: 50ms ON /
		50ms OFF (subito prima del LED rosso)
Rilevamento del corretto cablaggio delle sonde	10 secondi ON se viene rilevato un	10 secondi ON se non viene rilevato un
all'avvio	errore	errore
Passaggio alla modalità comando	Acceso fisso	Acceso fisso
Livello basso della batteria	Lampeggio (500ms ON ogni 60s)	-
Dispositivo non funzionante (ritorno alla fabbrica)	ON Fisso	-
Rilevamento del magnete in modalità PRODUZIONE		Lampeggiante 50ms ON / 50ms OFF
		dopo 3 secondi di rilevamento del
	OFF	magnete
In classe C, quando l'alimentazione esterna è	10 secondi ON	OFF
mancante all'avvio del dispositivo		

www.wit-italia.com

7 Risoluzione dei problemi

Antenna LoRa non raggiungibile

Contesto

Il gateway è configurato con un indirizzo IPV4 dinamico (fornito da un server DHCP) o il gateway non è raggiungibile sull'indirizzo IPV4 statico configurato.

Soluzione

- Step 1 Collegarsi al gateway tramite la porta seriale USB (vedi capitolo Indirizzamento IP)
- **Step 2** Una volta che la sessione è aperta, reimpostate una connessione IPV4 statica con i seguenti comandi (l'ultimo comando [6] è opzionale, permette di vedere se l'indirizzo IPV4 scelto è attivo sul gateway):

	anda amalé segretténe delete statés suctor wét
	sudo nmcli connection delete static-custom-wit
2	sudo nmcli connection add con-name static-custom-wit type ethernet ifname
	eth0 ipv4.method manual ipv4.address [Adresse IP]/24 ipv4.gateway
	[Passerelle par défaut]
	sudo nmcli connection modify static-custom-wit ipv4.dns "[Serveur DNS
	primaire]" && sudo nmcli connection modify static-custom-wit
	connection.autoconnect yes && sudo nmcli connection modify static-custom-wit
	connection.autoconnect yes && sudo nmcli connection modify static-custom-wit
	connection.autoconnect-retries 0 && sudo nmcli connection modify static-
	custom-wit connection.autoconnect-priority 1 && sudo nmcli connection up
	static-custom-wit
4	sudo nmcli connection modify backhaul connection.autoconnect no
5	sudo nmcli connection reload
	ifconfig

Step 3 Se i comandi precedenti hanno avuto successo, potete accedere all'interfaccia grafica del Manager tramite il browser WEB, questo indica che il vostro gateway è raggiungibile sull'indirizzo IPV4 statico scelto.

L'avvio automatico dell'antenna LoRa non si attiva

Contesto

L'opzione **Autostart** del servizio **udp-packet-forwarder** non riesce a rimanere attiva, e viene visualizzato un messaggio di insuccesso dell'autostart.

È importante controllare che la configurazione sia stata completata, poiché alcuni parametri non specificati (come il guadagno dell'antenna) possono causare il mancato avvio del servizio udppacket-forwarder.

Soluzione

Le due procedure proposte di seguito possono risolvere il problema, tuttavia, la prima proposta dovrebbe essere considerata per prima in quanto evita di resettare il gateway alle impostazioni di fabbrica. In effetti, questo reset provoca la perdita delle configurazioni legate alla connessione Ethernet (indirizzamento IPV4 statico), quindi sarà necessario riavviare il gateway tramite la connessione seriale (USB).

Procedura 1

Lo scopo di questa procedura è di ripristinare i file di configurazione del servizio udp-packet-forwarder che potrebbero essere corrotti.

- Step 1 Se l'antenna LoRa è raggiungibile tramite l'interfaccia Ethernet (se necessario via USB), si dovrà accedere all'interfaccia di amministrazione del sistema operativo Linux. Per fare questo, è necessario utilizzare il servizio SSH tramite il seguente comando ssh user@adress_IP dove « user » è il nome utente (admin di default) e IP address è l'indirizzo IP del gateway (ad esempio 192.168.1.50). Dopo aver eseguito il comando, il gateway chiederà di inserire la password legata al nome utente, e infine si accederà all'interfaccia di amministrazione del sistema operativo Linux.
- **Step 2** Una volta effettuato l'accesso al sistema operativo Linux, è necessario ripristinare i file corrotti copiando i file di backup tramite il seguente comando:
 - sudo cp /data/layers/factory/etc/pmonitor/services-available/*
 /etc/pmonitor/services-available/ && sudo pmcli services reload

Step 3 Se il comando precedente ha avuto successo, si può tornare all'interfaccia grafica per controllare lo stato attuale del servizio udp-packet-forwarder (se l'avvio automatico è abilitato di default, il servizio parte direttamente).

La configurazione del servizio udp-packet-forwarder (server, porta, ...) non è influenzata da questo ripristino, il gateway dovrebbe quindi collegarsi direttamente al server LoRaWAN[®] se la sua configurazione era già stata fatta.

Se questa procedura non dovesse risultare efficace, contattate il nostro servizio tecnico e seguite la procedura 2.

Procedura 2

Lo scopo di questa procedura è di ripristinare i file di configurazione del servizio udp-packet-forwarder che potrebbero essere corrotti. Tale procedura comporta il ripristino delle impostazioni di fabbrica del gateway (si perdono le configurazioni esistenti e si applicano le impostazioni di default).

- **Step 1** Attendere almeno un secondo dopo aver premuto il pulsante "Config/factory reset".
- **Step 2** Tenere premuto per almeno 10 secondi.
- **Step 3** Dopo che lo "Status LED" si accende brevemente, rilasciare il pulsante.
- **Step 4** Il gateway dovrebbe partire in modalità reset di fabbrica. Quando si avvia il sistema operativo Linux, uno script copia i file di default. In seguito, occorre riconfigurare l'antenna LoRa su un indirizzo IPV4 statico attraverso la porta seriale USB (vedi capitolo <u>Indirizzamento IP</u>).

Step 5 Una volta fatta questa prima configurazione, controllate tramite l'interfaccia grafica che il problema sia stato risolto (alcune impostazioni potrebbero dover essere fatte prima). Infine, seguite le altre fasi di configurazione spiegate in questo manuale.

